IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v91y2020i3d10.1007_s00186-019-00697-3.html
   My bibliography  Save this article

An asymptotically optimal strategy for constrained multi-armed bandit problems

Author

Listed:
  • Hyeong Soo Chang

    (Sogang University)

Abstract

This note considers the model of “constrained multi-armed bandit” (CMAB) that generalizes that of the classical stochastic MAB by adding a feasibility constraint for each action. The feasibility is in fact another (conflicting) objective that should be kept in order for a playing-strategy to achieve the optimality of the main objective. While the stochastic MAB model is a special case of the Markov decision process (MDP) model, the CMAB model is a special case of the constrained MDP model. For the asymptotic optimality measured by the probability of choosing an optimal feasible arm over infinite horizon, we show that the optimality is achievable by a simple strategy extended from the $$\epsilon _t$$ϵt-greedy strategy used for unconstrained MAB problems. We provide a finite-time lower bound on the probability of correct selection of an optimal near-feasible arm that holds for all time steps. Under some conditions, the bound approaches one as time t goes to infinity. A particular example sequence of $$\{\epsilon _t\}$${ϵt} having the asymptotic convergence rate in the order of $$(1-\frac{1}{t})^4$$(1-1t)4 that holds from a sufficiently large t is also discussed.

Suggested Citation

  • Hyeong Soo Chang, 2020. "An asymptotically optimal strategy for constrained multi-armed bandit problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 545-557, June.
  • Handle: RePEc:spr:mathme:v:91:y:2020:i:3:d:10.1007_s00186-019-00697-3
    DOI: 10.1007/s00186-019-00697-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-019-00697-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-019-00697-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuljin Park & Seong-Hee Kim, 2015. "Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints," Operations Research, INFORMS, vol. 63(5), pages 1195-1212, October.
    2. Eric Denardo & Eugene Feinberg & Uriel Rothblum, 2013. "The multi-armed bandit, with constraints," Annals of Operations Research, Springer, vol. 208(1), pages 37-62, September.
    3. Susan R. Hunter & Raghu Pasupathy, 2013. "Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 527-542, August.
    4. Gilles Stoltz & Sébastien Bubeck & Rémi Munos, 2011. "Pure exploration in finitely-armed and continuous-armed bandits," Post-Print hal-00609550, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    2. Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.
    3. Lee, Mi Lim & Park, Chuljin & Park, Dong Uk, 2018. "Self-adjusting the tolerance level in a fully sequential feasibility check procedure," European Journal of Operational Research, Elsevier, vol. 271(2), pages 733-745.
    4. Yuwei Zhou & Sigrún Andradóttir & Seong-Hee Kim & Chuljin Park, 2022. "Finding Feasible Systems for Subjective Constraints Using Recycled Observations," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3080-3095, November.
    5. Wang, Honggang, 2017. "Multi-objective retrospective optimization using stochastic zigzag search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 946-960.
    6. Alessandro Lizzeri & Eran Shmaya & Leeat Yariv, 2024. "Disentangling Exploration from Exploitation," NBER Working Papers 32424, National Bureau of Economic Research, Inc.
    7. Boxiao Chen & Xiuli Chao & Hyun-Soo Ahn, 2019. "Coordinating Pricing and Inventory Replenishment with Nonparametric Demand Learning," Operations Research, INFORMS, vol. 67(4), pages 1035-1052, July.
    8. L. Jeff Hong & Jun Luo & Barry L. Nelson, 2015. "Chance Constrained Selection of the Best," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 317-334, May.
    9. Masahiro Kato & Kaito Ariu, 2021. "The Role of Contextual Information in Best Arm Identification," Papers 2106.14077, arXiv.org, revised Feb 2024.
    10. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    11. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    12. Demet Batur & Lina Wang & F. Fred Choobineh, 2018. "Methods for System Selection Based on Sequential Mean–Variance Analysis," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 724-738, November.
    13. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    14. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
    15. Mohammed Shahid Abdulla & L Ramprasath, 2021. "BBECT: Bandit -based Ethical Clinical Trials," Working papers 459, Indian Institute of Management Kozhikode.
    16. Malekipirbazari, Milad & Çavuş, Özlem, 2024. "Index policy for multiarmed bandit problem with dynamic risk measures," European Journal of Operational Research, Elsevier, vol. 312(2), pages 627-640.
    17. Felipe Caro & Aparupa Das Gupta, 2022. "Robust control of the multi-armed bandit problem," Annals of Operations Research, Springer, vol. 317(2), pages 461-480, October.
    18. Marie Billaud Friess & Arthur Macherey & Anthony Nouy & Clémentine Prieur, 2022. "A PAC algorithm in relative precision for bandit problem with costly sampling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 161-185, October.
    19. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org, revised Jul 2024.
    20. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:91:y:2020:i:3:d:10.1007_s00186-019-00697-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.