IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v84y2016i1d10.1007_s00186-016-0541-5.html
   My bibliography  Save this article

On the solution continuity of parametric set optimization problems

Author

Listed:
  • Y. D. Xu

    (Chongqing University of Posts and Telecommunications)

  • S. J. Li

    (Chongqing University)

Abstract

The aim of this paper is to investigate the continuity of the solution set maps of set-valued vector optimization problems with set optimization criterion. First, we introduce a new concept, which is called a u-lower level map. Then, we give some sufficient conditions for the upper and lower semicontinuities of the generalized lower level map. Finally, by virtue of the semicontinuity of the u-lower level map, we obtain the continuity of the minimal solution set map to parametric set-valued vector optimization problems with set optimization criterion.

Suggested Citation

  • Y. D. Xu & S. J. Li, 2016. "On the solution continuity of parametric set optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 223-237, August.
  • Handle: RePEc:spr:mathme:v:84:y:2016:i:1:d:10.1007_s00186-016-0541-5
    DOI: 10.1007/s00186-016-0541-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-016-0541-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-016-0541-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xian-Jun Long & Jian-Wen Peng & Zai-Yun Peng, 2015. "Scalarization and pointwise well-posedness for set optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 763-773, August.
    2. S. W. Xiang & W. S. Yin, 2007. "Stability Results for Efficient Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 385-398, September.
    3. E. Miglierina & E. Molho, 2002. "Scalarization and Stability in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 657-670, September.
    4. Joël Benoist & Nicolae Popovici, 2003. "Characterizations of convex and quasiconvex set-valued maps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(3), pages 427-435, August.
    5. S. Khoshkhabar-amiranloo & E. Khorram, 2015. "Pointwise well-posedness and scalarization in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 195-210, October.
    6. Johannes Jahn, 2015. "A derivative-free descent method in set optimization," Computational Optimization and Applications, Springer, vol. 60(2), pages 393-411, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zi-Ru Zhang & Yang-Dong Xu, 2024. "The Continuity and Convexity of a Nonlinear Scalarization Function with Applications in Set Optimization Problems Involving a Partial Order Relation," Mathematics, MDPI, vol. 12(23), pages 1-22, December.
    2. Pham Huu Sach, 2018. "Stability Property in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 376-398, May.
    3. Lam Quoc Anh & Tran Quoc Duy & Dinh Vinh Hien & Daishi Kuroiwa & Narin Petrot, 2020. "Convergence of Solutions to Set Optimization Problems with the Set Less Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 416-432, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    2. Radu Boţ & Sorin-Mihai Grad & Gert Wanka, 2007. "A general approach for studying duality in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 417-444, June.
    3. T. Chuong & A. Kruger & J.-C. Yao, 2011. "Calmness of efficient solution maps in parametric vector optimization," Journal of Global Optimization, Springer, vol. 51(4), pages 677-688, December.
    4. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
    5. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    6. S. W. Xiang & W. S. Yin, 2007. "Stability Results for Efficient Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 385-398, September.
    7. T. Chuong & N. Huy & J. Yao, 2009. "Stability of semi-infinite vector optimization problems under functional perturbations," Computational Optimization and Applications, Springer, vol. 45(4), pages 583-595, December.
    8. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    9. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
    10. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    11. Khushboo & C. S. Lalitha, 2019. "A unified minimal solution in set optimization," Journal of Global Optimization, Springer, vol. 74(1), pages 195-211, May.
    12. Shiva Kapoor & C. S. Lalitha, 2019. "Stability in unified semi-infinite vector optimization," Journal of Global Optimization, Springer, vol. 74(2), pages 383-399, June.
    13. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    14. Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2017. "Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization," Annals of Operations Research, Springer, vol. 251(1), pages 89-104, April.
    15. B. Jiménez & V. Novo & A. Vílchez, 2020. "Characterization of set relations through extensions of the oriented distance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 89-115, February.
    16. M. Chinaie & J. Zafarani, 2009. "Image Space Analysis and Scalarization of Multivalued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 451-467, September.
    17. Gemayqzel Bouza & Ernest Quintana & Christiane Tammer, 2021. "A Steepest Descent Method for Set Optimization Problems with Set-Valued Mappings of Finite Cardinality," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 711-743, September.
    18. Lam Quoc Anh & Tran Quoc Duy & Dinh Vinh Hien & Daishi Kuroiwa & Narin Petrot, 2020. "Convergence of Solutions to Set Optimization Problems with the Set Less Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 416-432, May.
    19. Miglierina Enrico & Molho Elena, 2003. "Convergence of the minimal sets under convexity in vector optimization," Economics and Quantitative Methods qf0302, Department of Economics, University of Insubria.
    20. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:84:y:2016:i:1:d:10.1007_s00186-016-0541-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.