IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3839-d1536839.html
   My bibliography  Save this article

The Continuity and Convexity of a Nonlinear Scalarization Function with Applications in Set Optimization Problems Involving a Partial Order Relation

Author

Listed:
  • Zi-Ru Zhang

    (College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Yang-Dong Xu

    (College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

Abstract

In this paper, we deal with the properties and applications of a nonlinear scalarization function for sets by using the Minkowski difference. Under some suitable assumptions, the continuity and convexity concerned with the nonlinear scalarization function for sets are presented. As applications, the path connectedness of the solution sets to set optimization problems and the continuity of the solution mappings of parametric set optimization problems are established. The results achieved do not impose the monotonicity of the set-valued objective mapping, which are obviously different from the related ones in the literature.

Suggested Citation

  • Zi-Ru Zhang & Yang-Dong Xu, 2024. "The Continuity and Convexity of a Nonlinear Scalarization Function with Applications in Set Optimization Problems Involving a Partial Order Relation," Mathematics, MDPI, vol. 12(23), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3839-:d:1536839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. Jiménez & V. Novo & A. Vílchez, 2020. "Characterization of set relations through extensions of the oriented distance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 89-115, February.
    2. Yu Han & Nan-jing Huang, 2018. "Continuity and Convexity of a Nonlinear Scalarizing Function in Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 679-695, June.
    3. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    4. Y. D. Xu & S. J. Li, 2016. "On the solution continuity of parametric set optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 223-237, August.
    5. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
    2. Lam Quoc Anh & Tran Quoc Duy & Dinh Vinh Hien & Daishi Kuroiwa & Narin Petrot, 2020. "Convergence of Solutions to Set Optimization Problems with the Set Less Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 416-432, May.
    3. L. Huerga & B. Jiménez & V. Novo & A. Vílchez, 2021. "Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 413-436, April.
    4. Qamrul Hasan Ansari & Pradeep Kumar Sharma, 2022. "Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 247-279, June.
    5. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    6. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    7. Abadir, Karim, 1995. "On Efficient Simulations in Dynamic Models," Discussion Papers 9521, University of Exeter, Department of Economics.
    8. Khushboo & C. S. Lalitha, 2019. "A unified minimal solution in set optimization," Journal of Global Optimization, Springer, vol. 74(1), pages 195-211, May.
    9. L. Huerga & B. Jiménez & V. Novo, 2022. "New Notions of Proper Efficiency in Set Optimization with the Set Criterion," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 878-902, December.
    10. Luciano Fratocchi & Alberto Onetti & Alessia Pisoni & Marco Talaia, 2007. "Location of value added activities in hi-tech industries. The case of pharma-biotech firms in Italy," Economics and Quantitative Methods qf0708, Department of Economics, University of Insubria.
    11. Giovanni P. Crespi & Carola Schrage, 2021. "Applying set optimization to weak efficiency," Annals of Operations Research, Springer, vol. 296(1), pages 779-801, January.
    12. S. J. Li & K. L. Teo & X. Q. Yang, 2008. "Higher-Order Optimality Conditions for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 533-553, June.
    13. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    14. Marius Durea & Radu Strugariu, 2023. "Directional derivatives and subdifferentials for set-valued maps applied to set optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 687-707, March.
    15. Kuntal Som & Vellaichamy Vetrivel, 2022. "A Note on Pointwise Well-Posedness of Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 628-647, February.
    16. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    17. Meenakshi Gupta & Manjari Srivastava, 2020. "Approximate Solutions and Levitin–Polyak Well-Posedness for Set Optimization Using Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 191-208, July.
    18. Elisa Caprari & Lorenzo Cerboni Baiardi & Elena Molho, 2022. "Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach," Journal of Global Optimization, Springer, vol. 84(2), pages 295-320, October.
    19. Yu Han & Kai Zhang & Nan-jing Huang, 2020. "The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé–Kuratowski convergence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 175-196, February.
    20. Dumitru Motreanu & Van Thien Nguyen & Shengda Zeng, 2020. "Existence of Solutions for Implicit Obstacle Problems of Fractional Laplacian Type Involving Set-Valued Operators," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 391-407, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3839-:d:1536839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.