IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v83y2016i1p109-125.html
   My bibliography  Save this article

A trust-region method with improved adaptive radius for systems of nonlinear equations

Author

Listed:
  • Hamid Esmaeili
  • Morteza Kimiaei

Abstract

In this study, a new adaptive trust-region strategy is presented to solve nonlinear systems. More specifically, we propose a new method leading to produce a smaller trust-region radius close to the optimizer and a larger trust-region radius far away from the optimizer. Accordingly, it can lead to a smaller step-size close to the optimizer and a larger one far away from the optimizer. The new strategy includes a convex combination of the maximum norm of function value of some preceding successful iterates and the current norm of function value. The global convergence of the proposed approach is established while the local q-quadratic convergence rate is proved under local error bound condition, which is weaker than the nonsingularity. Numerical results of the proposed algorithm are also reported. Copyright Springer-Verlag Berlin Heidelberg 2016

Suggested Citation

  • Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
  • Handle: RePEc:spr:mathme:v:83:y:2016:i:1:p:109-125
    DOI: 10.1007/s00186-015-0522-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-015-0522-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-015-0522-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ju-liang Zhang & Yong Wang, 2003. "A new trust region method for nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 283-298, November.
    2. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, June.
    3. Jinyan Fan & Jianyu Pan, 2011. "An improved trust region algorithm for nonlinear equations," Computational Optimization and Applications, Springer, vol. 48(1), pages 59-70, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Armand & Ngoc Nguyen Tran, 2021. "Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 96-116, April.
    2. Morteza Kimiaei & Farzad Rahpeymaii, 2019. "A new nonmonotone line-search trust-region approach for nonlinear systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 199-232, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
    2. Naoki Marumo & Takayuki Okuno & Akiko Takeda, 2023. "Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 84(3), pages 833-874, April.
    3. Morteza Kimiaei & Farzad Rahpeymaii, 2019. "A new nonmonotone line-search trust-region approach for nonlinear systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 199-232, July.
    4. S. Bellavia & B. Morini & E. Riccietti, 2016. "On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation," Computational Optimization and Applications, Springer, vol. 64(1), pages 1-30, May.
    5. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    6. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    8. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    9. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    10. Jörg Fliege & Andrey Tin & Alain Zemkoho, 2021. "Gauss–Newton-type methods for bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 793-824, April.
    11. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    12. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    13. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    14. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    15. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    16. Wei Bian & Xiaojun Chen, 2017. "Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1063-1084, November.
    17. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    18. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    19. Li, Jinqing & Ma, Jun, 2019. "Maximum penalized likelihood estimation of additive hazards models with partly interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 170-180.
    20. Zohre Aminifard & Saman Babaie-Kafaki, 2019. "An optimal parameter choice for the Dai–Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix," 4OR, Springer, vol. 17(3), pages 317-330, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:83:y:2016:i:1:p:109-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.