IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v58y2003i2p283-298.html
   My bibliography  Save this article

A new trust region method for nonlinear equations

Author

Listed:
  • Ju-liang Zhang
  • Yong Wang

Abstract

In this paper, a new trust region method for the system of nonlinear equations is presented in which the determining of the trust region radius incorporates the information of its natural residual. The global convergence is obtained under mild conditions. Unlike traditional trust region method, the superlinear convergence of the method is proven under the local error bound condition. This condition is weaker than the nondegeneracy assumption which is necessary for superlinear convergence of traditional trust region method. We also propose an approximate algorithm for the trust region subproblem. Preliminary numerical experiments are reported. Copyright Springer-Verlag 2003

Suggested Citation

  • Ju-liang Zhang & Yong Wang, 2003. "A new trust region method for nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 283-298, November.
  • Handle: RePEc:spr:mathme:v:58:y:2003:i:2:p:283-298
    DOI: 10.1007/s001860300302
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860300302
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860300302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianfeng Ding & Quan Qu & Xinyi Wang, 2021. "A modified filter nonmonotone adaptive retrospective trust region method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
    2. Gonglin Yuan & Xiabin Duan & Wenjie Liu & Xiaoliang Wang & Zengru Cui & Zhou Sheng, 2015. "Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    3. S. Bellavia & B. Morini & E. Riccietti, 2016. "On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation," Computational Optimization and Applications, Springer, vol. 64(1), pages 1-30, May.
    4. Keyvan Amini & Mushtak A. K. Shiker & Morteza Kimiaei, 2016. "A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations," 4OR, Springer, vol. 14(2), pages 133-152, June.
    5. Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
    6. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    7. Yong Li & Gonglin Yuan & Zengxin Wei, 2015. "A Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
    8. Morteza Kimiaei & Farzad Rahpeymaii, 2019. "A new nonmonotone line-search trust-region approach for nonlinear systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 199-232, July.
    9. Naoki Marumo & Takayuki Okuno & Akiko Takeda, 2023. "Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 84(3), pages 833-874, April.
    10. Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
    11. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    12. Gonglin Yuan & Zengxin Wei & Zhongxing Wang, 2013. "Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization," Computational Optimization and Applications, Springer, vol. 54(1), pages 45-64, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:58:y:2003:i:2:p:283-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.