IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i1d10.1007_s10287-023-00493-9.html
   My bibliography  Save this article

Decentralized convex optimization on time-varying networks with application to Wasserstein barycenters

Author

Listed:
  • Olga Yufereva

    (N. N. Krasovskii Institute of Mathematics and Mechanics)

  • Michael Persiianov

    (Moscow Institute of Physics and Technology)

  • Pavel Dvurechensky

    (Weierstrass Institute for Applied Analysis and Stochastics)

  • Alexander Gasnikov

    (Moscow Institute of Physics and Technology
    Skoltech
    Institute of information transmission problems)

  • Dmitry Kovalev

    (Université catholique de Louvain (UCL))

Abstract

Inspired by recent advances in distributed algorithms for approximating Wasserstein barycenters, we propose a novel distributed algorithm for this problem. The main novelty is that we consider time-varying computational networks, which are motivated by examples when only a subset of sensors can observe each time step, and yet, the goal is to average signals (e.g., satellite pictures of some area) by approximating their barycenter. We embed this problem into a class of non-smooth dual-friendly distributed optimization problems over time-varying networks and develop a first-order method for this class. We prove non-asymptotic accelerated in the sense of Nesterov convergence rates and explicitly characterize their dependence on the parameters of the network and its dynamics. In the experiments, we demonstrate the efficiency of the proposed algorithm when applied to the Wasserstein barycenter problem.

Suggested Citation

  • Olga Yufereva & Michael Persiianov & Pavel Dvurechensky & Alexander Gasnikov & Dmitry Kovalev, 2024. "Decentralized convex optimization on time-varying networks with application to Wasserstein barycenters," Computational Management Science, Springer, vol. 21(1), pages 1-31, June.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-023-00493-9
    DOI: 10.1007/s10287-023-00493-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00493-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00493-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eduard Gorbunov & Alexander Rogozin & Aleksandr Beznosikov & Darina Dvinskikh & Alexander Gasnikov, 2022. "Recent Theoretical Advances in Decentralized Distributed Convex Optimization," Springer Optimization and Its Applications, in: Ashkan Nikeghbali & Panos M. Pardalos & Andrei M. Raigorodskii & Michael Th. Rassias (ed.), High-Dimensional Optimization and Probability, pages 253-325, Springer.
    2. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2012. "Double smoothing technique for large-scale linearly constrained convex optimization," LIDAM Reprints CORE 2423, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Radu Boţ & Christopher Hendrich, 2013. "A double smoothing technique for solving unconstrained nondifferentiable convex optimization problems," Computational Optimization and Applications, Springer, vol. 54(2), pages 239-262, March.
    3. Pavel Dvurechensky & Yurii Nesterov & Vladimir Spokoiny, 2015. "Primal-Dual Methods for Solving Infinite-Dimensional Games," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 23-51, July.
    4. Stefan Richter & Colin Jones & Manfred Morari, 2013. "Certification aspects of the fast gradient method for solving the dual of parametric convex programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 305-321, June.
    5. Oleg O. Khamisov & Oleg V. Khamisov & Todor D. Ganchev & Eugene S. Semenkin, 2024. "A Method for Transforming Non-Convex Optimization Problem to Distributed Form," Mathematics, MDPI, vol. 12(17), pages 1-16, September.
    6. Quoc Tran-Dinh, 2017. "Adaptive smoothing algorithms for nonsmooth composite convex minimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 425-451, April.
    7. Jueyou Li & Guo Chen & Zhaoyang Dong & Zhiyou Wu, 2016. "A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints," Computational Optimization and Applications, Springer, vol. 64(3), pages 671-697, July.
    8. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "Intermediate gradient methods for smooth convex problems with inexact oracle," LIDAM Discussion Papers CORE 2013017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
    10. Radu Boţ & Christopher Hendrich, 2015. "A variable smoothing algorithm for solving convex optimization problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 124-150, April.
    11. Taylor, A. & Hendrickx, J. & Glineur, F., 2015. "Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods," LIDAM Discussion Papers CORE 2015013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-023-00493-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.