IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v69y2009i1p125-140.html
   My bibliography  Save this article

Levitin–Polyak well-posedness of vector equilibrium problems

Author

Listed:
  • S. Li
  • M. Li

Abstract

In this paper, two types of Levitin–Polyak well-posedness of vector equilibrium problems with variable domination structures are investigated. Criteria and characterizations for two types of Levitin–Polyak well-posedness of vector equilibrium problems are shown. Moreover, by virtue of a gap function for vector equilibrium problems, the equivalent relations between the Levitin–Polyak well-posedness for an optimization problem and the Levitin–Polyak well-posedness for a vector equilibrium problem are obtained. Copyright Springer-Verlag 2009

Suggested Citation

  • S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
  • Handle: RePEc:spr:mathme:v:69:y:2009:i:1:p:125-140
    DOI: 10.1007/s00186-008-0214-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0214-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0214-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
    2. G. Y. Chen & C. J. Goh & X. Q. Yang, 1999. "Vector network equilibrium problems and nonlinear scalarization methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(2), pages 239-253, April.
    3. S. Li & K. Teo & X. Yang, 2005. "Generalized vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(3), pages 385-397, July.
    4. M. Bianchi & N. Hadjisavvas & S. Schaible, 1997. "Vector Equilibrium Problems with Generalized Monotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 527-542, March.
    5. S. J. Li & Hong Yan & G. Y. Chen, 2003. "Differential and sensitivity properties of gap functions for vector variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(3), pages 377-391, August.
    6. D.E. Ward & G.M. Lee, 2002. "On Relations Between Vector Optimization Problems and Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 583-596, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    2. J. W. Chen & Y. J. Cho & S. A. Khan & Z. Wan & C. F. Wen, 2015. "The Levitin-Polyak well-posedness by perturbations for systems of general variational inclusion and disclusion problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(6), pages 901-920, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
    2. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    3. N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
    4. T. C. E. Cheng & Y. N. Wu, 2006. "A Multiproduct, Multicriterion Supply-Demand Network Equilibrium Model," Operations Research, INFORMS, vol. 54(3), pages 544-554, June.
    5. Yunan Wu & Yuchen Peng & Long Peng & Ling Xu, 2012. "Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 485-496, May.
    6. Yu Han & Nan-jing Huang, 2018. "Continuity and Convexity of a Nonlinear Scalarizing Function in Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 679-695, June.
    7. Elena-Andreea Florea, 2018. "Vector Optimization Problems with Generalized Functional Constraints in Variable Ordering Structure Setting," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 94-118, July.
    8. Nguyen Van Hung & Vicente Novo & Vo Minh Tam, 2022. "Error bound analysis for vector equilibrium problems with partial order provided by a polyhedral cone," Journal of Global Optimization, Springer, vol. 82(1), pages 139-159, January.
    9. J. H. Qiu & Y. Hao, 2010. "Scalarization of Henig Properly Efficient Points in Locally Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 71-92, October.
    10. Do Luu & Dinh Hang, 2014. "Efficient solutions and optimality conditions for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 163-177, April.
    11. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    12. M. Bianchi & R. Pini, 2002. "A Result on Localization of Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 335-343, November.
    13. Q. H. Ansari & I. V. Konnov & J. C. Yao, 2001. "Existence of a Solution and Variational Principles for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 481-492, September.
    14. Gabriele Eichfelder & Refail Kasimbeyli, 2014. "Properly optimal elements in vector optimization with variable ordering structures," Journal of Global Optimization, Springer, vol. 60(4), pages 689-712, December.
    15. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    16. Pham Huu Sach & Le Anh Tuan, 2013. "New Scalarizing Approach to the Stability Analysis in Parametric Generalized Ky Fan Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 347-364, May.
    17. Yu Han, 2018. "Lipschitz Continuity of Approximate Solution Mappings to Parametric Generalized Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 763-793, September.
    18. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    19. J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
    20. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:69:y:2009:i:1:p:125-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.