IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v76y2012i1p21-41.html
   My bibliography  Save this article

Power utility maximization in exponential Lévy models: convergence of discrete-time to continuous-time maximizers

Author

Listed:
  • Johannes Temme

Abstract

We consider power utility maximization of terminal wealth in a 1-dimensional continuous-time exponential Lévy model with finite time horizon. We discretize the model by restricting portfolio adjustments to an equidistant discrete time grid. Under minimal assumptions we prove convergence of the optimal discrete-time strategies to the continuous-time counterpart. In addition, we provide and compare qualitative properties of the discrete-time and continuous-time optimizers. Copyright Springer-Verlag 2012

Suggested Citation

  • Johannes Temme, 2012. "Power utility maximization in exponential Lévy models: convergence of discrete-time to continuous-time maximizers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(1), pages 21-41, August.
  • Handle: RePEc:spr:mathme:v:76:y:2012:i:1:p:21-41
    DOI: 10.1007/s00186-012-0388-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-012-0388-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-012-0388-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
    2. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    3. He, Hua, 1991. "Optimal consumption-portfolio policies: A convergence from discrete to continuous time models," Journal of Economic Theory, Elsevier, vol. 55(2), pages 340-363, December.
    4. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    5. Kristin Reikvam & Fred Espen Benth & Kenneth Hvistendahl Karlsen, 2001. "Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach," Finance and Stochastics, Springer, vol. 5(3), pages 275-303.
    6. L.C.G. Rogers, 2001. "The relaxed investor and parameter uncertainty," Finance and Stochastics, Springer, vol. 5(2), pages 131-154.
    7. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    8. Marcel Nutz, 2009. "The Bellman equation for power utility maximization with semimartingales," Papers 0912.1883, arXiv.org, revised Mar 2012.
    9. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    10. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Neufeld & Marcel Nutz, 2015. "Robust Utility Maximization with L\'evy Processes," Papers 1502.05920, arXiv.org, revised Mar 2016.
    2. Johannes Temme, 2011. "Power Utility Maximization in Discrete-Time and Continuous-Time Exponential Levy Models," Papers 1103.5575, arXiv.org, revised Apr 2012.
    3. João Guerra & Manuel Guerra & Zachary Polaski, 2019. "Market Timing with Option-Implied Distributions in an Exponentially Tempered Stable Lévy Market," Working Papers REM 2019/74, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    4. Oleksii Mostovyi, 2017. "Optimal consumption of multiple goods in incomplete markets," Papers 1705.02291, arXiv.org, revised Jan 2018.
    5. Nikolay Andreev, 2019. "Robust Portfolio Optimization in an Illiquid Market in Discrete-Time," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    6. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    7. Carmine de Franco & Johann Nicolle & Huyên Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Working Papers hal-01923917, HAL.
    8. Le Courtois, Olivier & Menoncin, Francesco, 2015. "Portfolio optimisation with jumps: Illustration with a pension accumulation scheme," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 127-137.
    9. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Dealing with Drift Uncertainty: A Bayesian Learning Approach," Risks, MDPI, vol. 7(1), pages 1-18, January.
    10. Carmine De Franco & Johann Nicolle & Huy^en Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Papers 1811.06893, arXiv.org.
    11. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    12. Castellano, Rosella & Cerqueti, Roy, 2014. "Mean–Variance portfolio selection in presence of infrequently traded stocks," European Journal of Operational Research, Elsevier, vol. 234(2), pages 442-449.
    13. David Feldman, 2007. "Incomplete information equilibria: Separation theorems and other myths," Annals of Operations Research, Springer, vol. 151(1), pages 119-149, April.
    14. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Bayesian Learning For The Markowitz Portfolio Selection Problem," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-40, November.
    15. Andreas Fagereng & Luigi Guiso & Davide Malacrino & Luigi Pistaferri, 2020. "Heterogeneity and Persistence in Returns to Wealth," Econometrica, Econometric Society, vol. 88(1), pages 115-170, January.
    16. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    17. Mr. Christopher Carroll & Mr. Martin Sommer & Mr. Jiri Slacalek, 2012. "Dissecting Saving Dynamics: Measuring Wealth, Precautionary, and Credit Effects," IMF Working Papers 2012/219, International Monetary Fund.
    18. Montserrat Guillén & Jean Pinquet, 2008. "Long-Term Care: Risk Description of a Spanish Portfolio and Economic Analysis of the Timing of Insurance Purchase," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 33(4), pages 659-672, October.
    19. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    20. Prat, Georges, 2013. "Equity risk premium and time horizon: What do the U.S. secular data say?," Economic Modelling, Elsevier, vol. 34(C), pages 76-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:76:y:2012:i:1:p:21-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.