IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0912.1883.html
   My bibliography  Save this paper

The Bellman equation for power utility maximization with semimartingales

Author

Listed:
  • Marcel Nutz

Abstract

We study utility maximization for power utility random fields with and without intermediate consumption in a general semimartingale model with closed portfolio constraints. We show that any optimal strategy leads to a solution of the corresponding Bellman equation. The optimal strategies are described pointwise in terms of the opportunity process, which is characterized as the minimal solution of the Bellman equation. We also give verification theorems for this equation.

Suggested Citation

  • Marcel Nutz, 2009. "The Bellman equation for power utility maximization with semimartingales," Papers 0912.1883, arXiv.org, revised Mar 2012.
  • Handle: RePEc:arx:papers:0912.1883
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0912.1883
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Neufeld & Marcel Nutz, 2015. "Robust Utility Maximization with L\'evy Processes," Papers 1502.05920, arXiv.org, revised Mar 2016.
    2. Dirk Becherer & Martin Buttner & Klebert Kentia, 2016. "On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples," Papers 1607.06644, arXiv.org, revised Nov 2019.
    3. Philip A. Ernst & L. C. G. Rogers, 2020. "The Value of Insight," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1193-1209, November.
    4. Christoph Czichowsky, 2013. "Time-consistent mean-variance portfolio selection in discrete and continuous time," Finance and Stochastics, Springer, vol. 17(2), pages 227-271, April.
    5. Jan Kallsen & Johannes Muhle-Karbe & Richard Vierthauer, 2009. "Asymptotic Power Utility-Based Pricing and Hedging," Papers 0912.3362, arXiv.org, revised Jan 2013.
    6. Johannes Temme, 2012. "Power utility maximization in exponential Lévy models: convergence of discrete-time to continuous-time maximizers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(1), pages 21-41, August.
    7. Frei, Christoph & Mocha, Markus & Westray, Nicholas, 2012. "BSDEs in utility maximization with BMO market price of risk," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2486-2519.
    8. Christoph Czichowsky, 2012. "Time-Consistent Mean-Variance Portfolio Selection in Discrete and Continuous Time," Papers 1205.4748, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.1883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.