Continuous location model of a rectangular barrier facility
Author
Abstract
Suggested Citation
DOI: 10.1007/s11750-016-0424-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kelachankuttu, Hari & Batta, Rajan & Nagi, Rakesh, 2007. "Contour line construction for a new rectangular facility in an existing layout with rectangular departments," European Journal of Operational Research, Elsevier, vol. 180(1), pages 149-162, July.
- Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
- Selçuk Savaş & Rajan Batta & Rakesh Nagi, 2002. "Finite-Size Facility Placement in the Presence of Barriers to Rectilinear Travel," Operations Research, INFORMS, vol. 50(6), pages 1018-1031, December.
- Horst Hamacher & Kathrin Klamroth, 2000. "Planar Weber location problems with barriers and block norms," Annals of Operations Research, Springer, vol. 96(1), pages 191-208, November.
- Masashi Miyagawa, 2014. "Optimal allocation of area in hierarchical road networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 617-630, September.
- Klamroth, K., 2001. "A reduction result for location problems with polyhedral barriers," European Journal of Operational Research, Elsevier, vol. 130(3), pages 486-497, May.
- JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, March.
- Stefan Nickel & Justo Puerto & Antonio M. Rodriguez-Chia, 2003. "An Approach to Location Models Involving Sets as Existing Facilities," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 693-715, November.
- Robert F. Love & James G. Morris, 1979. "Mathematical Models of Road Travel Distances," Management Science, INFORMS, vol. 25(2), pages 130-139, February.
- Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
- Zhang, Min & Savas, Selçuk & Batta, Rajan & Nagi, Rakesh, 2009. "Facility placement with sub-aisle design in an existing layout," European Journal of Operational Research, Elsevier, vol. 197(1), pages 154-165, August.
- Katz, I. Norman & Cooper, Leon, 1981. "Facility location in the presence of forbidden regions, I: Formulation and the case of Euclidean distance with one forbidden circle," European Journal of Operational Research, Elsevier, vol. 6(2), pages 166-173, February.
- L. Frießs & K. Klamroth & M. Sprau, 2005. "A Wavefront Approach to Center Location Problems with Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 35-48, April.
- Y. P. Aneja & M. Parlar, 1994. "Technical Note—Algorithms for Weber Facility Location in the Presence of Forbidden Regions and/or Barriers to Travel," Transportation Science, INFORMS, vol. 28(1), pages 70-76, February.
- Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
- P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
- Rajan Batta & Anjan Ghose & Udatta S. Palekar, 1989. "Locating Facilities on the Manhattan Metric with Arbitrarily Shaped Barriers and Convex Forbidden Regions," Transportation Science, INFORMS, vol. 23(1), pages 26-36, February.
- Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
- Stefan Nickel & Justo Puerto & Antonio M. Rodríguez-Chía, 2005. "MCDM Location Problems," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 761-787, Springer.
- Richard C. Larson & Ghazala Sadiq, 1983. "Facility Locations with the Manhattan Metric in the Presence of Barriers to Travel," Operations Research, INFORMS, vol. 31(4), pages 652-669, August.
- Jack Brimberg & Henrik Juel & Mark-Christoph Körner & Anita Schöbel, 2014. "Locating an axis-parallel rectangle on a Manhattan plane," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 185-207, April.
- Butt, Steven E. & Cavalier, Tom M., 1996. "An efficient algorithm for facility location in the presence of forbidden regions," European Journal of Operational Research, Elsevier, vol. 90(1), pages 56-70, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Masashi Miyagawa, 2020. "Optimal number and length of point-like and line-like facilities of grid and random patterns," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 213-230, April.
- Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
- Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
- Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
- Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
- Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
- Murat Oğuz & Tolga Bektaş & Julia A Bennell & Jörg Fliege, 2016. "A modelling framework for solving restricted planar location problems using phi-objects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1080-1096, August.
- P.M. Dearing & H.W. Hamacher & K. Klamroth, 2002. "Dominating sets for rectilinear center location problems with polyhedral barriers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 647-665, October.
- Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
- P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
- Zhang, Min & Savas, Selçuk & Batta, Rajan & Nagi, Rakesh, 2009. "Facility placement with sub-aisle design in an existing layout," European Journal of Operational Research, Elsevier, vol. 197(1), pages 154-165, August.
- Oğuz, Murat & Bektaş, Tolga & Bennell, Julia A., 2018. "Multicommodity flows and Benders decomposition for restricted continuous location problems," European Journal of Operational Research, Elsevier, vol. 266(3), pages 851-863.
- Canbolat, Mustafa S. & Wesolowsky, George O., 2012. "On the use of the Varignon frame for single facility Weber problems in the presence of convex barriers," European Journal of Operational Research, Elsevier, vol. 217(2), pages 241-247.
- Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
- Kathrin Klamroth & Margaret M. Wiecek, 2002. "A Bi-Objective Median Location Problem With a Line Barrier," Operations Research, INFORMS, vol. 50(4), pages 670-679, August.
- Selçuk Savaş & Rajan Batta & Rakesh Nagi, 2002. "Finite-Size Facility Placement in the Presence of Barriers to Rectilinear Travel," Operations Research, INFORMS, vol. 50(6), pages 1018-1031, December.
- Kelachankuttu, Hari & Batta, Rajan & Nagi, Rakesh, 2007. "Contour line construction for a new rectangular facility in an existing layout with rectangular departments," European Journal of Operational Research, Elsevier, vol. 180(1), pages 149-162, July.
- Sarkar, Avijit & Batta, Rajan & Nagi, Rakesh, 2007. "Placing a finite size facility with a center objective on a rectangular plane with barriers," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1160-1176, June.
- Byrne, Thomas & Kalcsics, Jörg, 2022. "Conditional facility location problems with continuous demand and a polygonal barrier," European Journal of Operational Research, Elsevier, vol. 296(1), pages 22-43.
- Pawel Kalczynski & Zvi Drezner, 2021. "The obnoxious facilities planar p-median problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 577-593, June.
- J. Brimberg & S. Salhi, 2005. "A Continuous Location-Allocation Problem with Zone-Dependent Fixed Cost," Annals of Operations Research, Springer, vol. 136(1), pages 99-115, April.
- Klamroth, K., 2001. "A reduction result for location problems with polyhedral barriers," European Journal of Operational Research, Elsevier, vol. 130(3), pages 486-497, May.
More about this item
Keywords
Location; Closest distance; Barrier distance; Rectilinear distance; Pareto optimal;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:25:y:2017:i:1:d:10.1007_s11750-016-0424-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.