IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v82y2022ipas0038012122000106.html
   My bibliography  Save this article

Location-allocation problem for resource distribution under uncertainty in disaster relief operations

Author

Listed:
  • Shaw, Lipika
  • Das, Soumen Kumar
  • Roy, Sankar Kumar

Abstract

Disaster disrupts society to lead a normal life by causing huge casualties and damages or loss of properties, environment, or essential services of a society or a nation. In the case of a catastrophe, a suitable resource management program is needed to distribute resources efficiently among the people of the areas affected by the calamity. In this work, we propose a mixed-integer non-linear mathematical model related to resource management. We consider a multi-objective optimization problem to provide the maximum services to the people by determining the positions of the distribution centers. This humanitarian logistic model optimizes three criteria: (i) minimizing the cost, (ii) minimizing the time, (iii) maximizing the affected coverage area. Due to the impreciseness of the disastrous environment, some parameters of the model are chosen as a triangular type-2 fuzzy number in order to deal with the uncertainty. An improved neutrosophic compromise programming is incorporated to solve the stated problem. Therefore the solutions are compared with the other two existing techniques, such as the novel method and fuzzy TOPSIS. Three numerical examples are considered to explain the model properly. After that, a sensitivity analysis is performed to visualize the impact of demand, supply and capacity on the objective functions. Finally, conclusions and future scopes related to this study are drawn.

Suggested Citation

  • Shaw, Lipika & Das, Soumen Kumar & Roy, Sankar Kumar, 2022. "Location-allocation problem for resource distribution under uncertainty in disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
  • Handle: RePEc:eee:soceps:v:82:y:2022:i:pa:s0038012122000106
    DOI: 10.1016/j.seps.2022.101232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122000106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    2. Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
    3. Drezner, Zvi & Wesolowsky, George O., 2001. "On the collection depots location problem," European Journal of Operational Research, Elsevier, vol. 130(3), pages 510-518, May.
    4. Leon Cooper, 1972. "The Transportation-Location Problem," Operations Research, INFORMS, vol. 20(1), pages 94-108, February.
    5. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    6. Jian-lin Jiang & Ya Xu, 2006. "Minisum location problem with farthest Euclidean distances," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 285-308, October.
    7. Soumen Kumar Das & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2020. "Heuristic approaches for solid transportation-p-facility location problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 939-961, September.
    8. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "A bi-objective approach to discrete cost-bottleneck location problems," Annals of Operations Research, Springer, vol. 267(1), pages 179-201, August.
    9. K. B. Haley, 1962. "New Methods in Mathematical Programming---The Solid Transportation Problem," Operations Research, INFORMS, vol. 10(4), pages 448-463, August.
    10. Seyed Ali Mirzapour & Kuan Yew Wong & Kannan Govindan, 2013. "A Capacitated Location-Allocation Model for Flood Disaster Service Operations with Border Crossing Passages and Probabilistic Demand Locations," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-11, December.
    11. Menghao Xi & Feng Ye & Zhong Yao & Qiuhong Zhao, 2013. "A Modified -Median Model for the Emergency Facilities Location Problem and Its Variable Neighbourhood Search-Based Algorithm," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, May.
    12. Muhammad Salman Habib & Young Hae Lee & Muhammad Saad Memon, 2016. "Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature Review," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-20, February.
    13. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    14. Mojtaba Akbari & Saber Molla-Alizadeh-Zavardehi & Sadegh Niroomand, 2020. "Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network," Operational Research, Springer, vol. 20(1), pages 447-471, March.
    15. Soumen Kumar Das & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2020. "An exact and a heuristic approach for the transportation-p-facility location problem," Computational Management Science, Springer, vol. 17(3), pages 389-407, October.
    16. Feifei Jin & Jinpei Liu & Ligang Zhou & Luis Martínez, 2021. "Consensus-Based Linguistic Distribution Large-Scale Group Decision Making Using Statistical Inference and Regret Theory," Group Decision and Negotiation, Springer, vol. 30(4), pages 813-845, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maleki, Abolfazl & Hemmati, Vahid & Reza Abazari, Seyed & Aghsami, Amir & Rabbani, Masoud, 2024. "Optimal distribution and waste management of Covid-19 vaccines from vaccination centers’ satisfaction perspective – A fuzzy time window-based VRP," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Akbari, Leilanaz & Kazemi, Ahmad & Salari, Majid, 2023. "Operational planning of vehicles for rescue and relief operations considering the unavailability of the relocated vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    3. Franco, David Gabriel de Barros & Steiner, Maria Teresinha Arns & Fernandes, Rafaela Pereira & Nascimento, Victor Fernandez, 2022. "Modeling municipal solid waste disposal consortia on a regional scale for present and future scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    4. Liang, Siqi & Bai, Xuejie & Li, Yongli & Xin, Hening, 2023. "Model and solution of sustainable bi-level emergency commodity allocation based on type-2 fuzzy theory," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    5. Sotelo-Salas, Christian & Monardes-Concha, Carlos A. & Pérez-Galarce, Francisco & Santa González, Rosemarie, 2024. "A multi-objective optimization model for planning emergency shelters after a tsunami," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumen Kumar Das & Magfura Pervin & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2023. "Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach," Annals of Operations Research, Springer, vol. 324(1), pages 283-309, May.
    2. Yijun Shi & Guofang Zhai & Lihua Xu & Quan Zhu & Jinyang Deng, 2019. "Planning Emergency Shelters for Urban Disasters: A Multi-Level Location–Allocation Modeling Approach," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    3. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    4. Bakker, Hannah & Diehlmann, Florian & Wiens, Marcus & Nickel, Stefan & Schultmann, Frank, 2023. "School or parking lot? Selecting locations for points of distribution in urban disasters," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    5. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    6. Areej Alhothali & Budoor Alwated & Kamil Faisal & Sultanah Alshammari & Reem Alotaibi & Nusaybah Alghanmi & Omaimah Bamasag & Manal Bin Yamin, 2022. "Location-Allocation Model to Improve the Distribution of COVID-19 Vaccine Centers in Jeddah City, Saudi Arabia," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    7. Dayanna Rodrigues da Cunha Nunes & Orivalde Soares da Silva Júnior & Renata Albergaria de Mello Bandeira & Yesus Emmanuel Medeiros Vieira, 2023. "A Robust Stochastic Programming Model for the Well Location Problem: The Case of The Brazilian Northeast Region," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    8. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    9. Michael J. Brusco, 2022. "Solving Classic Discrete Facility Location Problems Using Excel Spreadsheets," INFORMS Transactions on Education, INFORMS, vol. 22(3), pages 160-171, May.
    10. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    11. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    12. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    13. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    14. Theophilus Dhyankumar Chellappa & Ramasubramaniam Muthurathinasapathy & V. G. Venkatesh & Yangyan Shi & Samsul Islam, 2023. "Location of organ procurement and distribution organisation decisions and their impact on kidney allocations: a developing country perspective," Annals of Operations Research, Springer, vol. 321(1), pages 755-781, February.
    15. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    16. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    17. Mohri, Seyed Sina & Akbarzadeh, Meisam & Sayed Matin, Seyed Hamed, 2020. "A Hybrid model for locating new emergency facilities to improve the coverage of the road crashes," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    18. Kai Guo & Wei Wang & Shixiang Tian & Juntao Yang & Zebiao Jiang & Zhangyin Dai, 2022. "Research on Optimization Technology of Cross-Regional Synergistic Deployment of Fire Stations Based on Fire Risk," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    19. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    20. Ozgur Turetken, 2008. "Is your back-up IT infrastructure in a safe location?," Information Systems Frontiers, Springer, vol. 10(3), pages 375-383, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:82:y:2022:i:pa:s0038012122000106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.