IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v29y2024i7d10.1007_s11027-024-10170-0.html
   My bibliography  Save this article

The global potential for carbon removal through biochar in shifting cultivation systems

Author

Listed:
  • Anders Henrik Sirén

    (Universidad Intercultural de las Nacionalidades y Pueblos Indígenas Amawtay Wasi)

Abstract

In the Special Report on Climate Change and Land, published by the Intergovernmental Panel on Climate Change, the global potential for removal of carbon from the atmosphere by making biochar and amending it to soils in shifting cultivation systems was estimated to approximately 0.21 – 0.35 Gt C/year, corresponding to 2.1 – 3.6% of current global CO2 emissions. Here we review these estimates and present experiences from pilot field trials making biochar in shifting cultivation fields. Making use of some more recent data, we calculated a revised estimate of 0.17 Gt C/yr as the minimum feasible potential, and 0.32, Gt C/yr for the technical potential. The difference between these is that in order to realize the former, production costs as well as negative environmental impacts are minimal, whereas realizing the latter, on the other hand implies significant, potentially prohibitive, production cost and might also imply significant negative environmental impacts, including the emission of GHGs that in the worst case might offset the climate benefits provided by the biochar it. Taking into account that the addition of biochar to the soil increases tree growth rates, these estimates increase to 0.22 and 0.42 Gt C/yr, respectively. Remaining key challenges are to 1) identify production methods that ensure that emissions of GHGs and other environmental pollutants from biochar production are minimized, 2) reduce production costs, and 3) design procedures for monitoring the storage of biochar in soils under shifting cultivation and mechanisms for payments to shifting cultivators who carry out this work.

Suggested Citation

  • Anders Henrik Sirén, 2024. "The global potential for carbon removal through biochar in shifting cultivation systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-14, October.
  • Handle: RePEc:spr:masfgc:v:29:y:2024:i:7:d:10.1007_s11027-024-10170-0
    DOI: 10.1007/s11027-024-10170-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-024-10170-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-024-10170-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    2. Johannes Bednar & Michael Obersteiner & Artem Baklanov & Marcus Thomson & Fabian Wagner & Oliver Geden & Myles Allen & Jim W. Hall, 2021. "Operationalizing the net-negative carbon economy," Nature, Nature, vol. 596(7872), pages 377-383, August.
    3. Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    2. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    3. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    4. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    5. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    6. Adam O’Toole & Christophe Moni & Simon Weldon & Anne Schols & Monique Carnol & Bernard Bosman & Daniel P. Rasse, 2018. "Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway," Agriculture, MDPI, vol. 8(11), pages 1-19, October.
    7. repec:idb:brikps:64718 is not listed on IDEAS
    8. Kastner, Thomas, 2009. "Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century," Ecological Economics, Elsevier, vol. 69(2), pages 260-269, December.
    9. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    10. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    11. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    12. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    13. Eugene Balashov & Natalya Buchkina & Vladimír Šimanský & Ján Horák, 2022. "Effects of Slow Pyrolysis Biochar on CO 2 Emissions from Two Soils under Anaerobic Conditions," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
    14. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    15. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    16. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    17. Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.
    18. Matovic, Darko, 2011. "Biochar as a viable carbon sequestration option: Global and Canadian perspective," Energy, Elsevier, vol. 36(4), pages 2011-2016.
    19. Wähling, Lara-Sophie & Fridahl, Mathias & Heimann, Tobias & Merk, Christine, 2023. "The sequence matters: Expert opinions on policy mechanisms for bioenergy with carbon capture and storage," Open Access Publications from Kiel Institute for the World Economy 275739, Kiel Institute for the World Economy (IfW Kiel).
    20. SundarRajan, PanneerSelvam & Gopinath, Kannappan Panchamoorthy & Arun, Jayaseelan & GracePavithra, Kirubanandam & Pavendan, Kumar & AdithyaJoseph, Antonysamy, 2020. "An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass," Renewable Energy, Elsevier, vol. 151(C), pages 79-87.
    21. David M. Filiberto & John L. Gaunt, 2013. "Practicality of Biochar Additions to Enhance Soil and Crop Productivity," Agriculture, MDPI, vol. 3(4), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:29:y:2024:i:7:d:10.1007_s11027-024-10170-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.