IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i11p171-d178723.html
   My bibliography  Save this article

Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway

Author

Listed:
  • Adam O’Toole

    (Department of Soil Quality and Climate Change, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430 Ås, Norway
    Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway)

  • Christophe Moni

    (Department of Soil Quality and Climate Change, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430 Ås, Norway)

  • Simon Weldon

    (Department of Soil Quality and Climate Change, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430 Ås, Norway)

  • Anne Schols

    (Soil Geography and Landscape Group, Wageningen University, 6700 Wageningen, The Netherlands)

  • Monique Carnol

    (Laboratory of Plant and Microbial Ecology, InBioS, Botany B22, Chemin de la Vallée 4, University of Liège, 4000 Liège, Belgium)

  • Bernard Bosman

    (Laboratory of Plant and Microbial Ecology, InBioS, Botany B22, Chemin de la Vallée 4, University of Liège, 4000 Liège, Belgium)

  • Daniel P. Rasse

    (Department of Soil Quality and Climate Change, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430 Ås, Norway)

Abstract

The application of biochar to soils is a promising technique for increasing soil organic C and offsetting GHG emissions. However, large-scale adoption by farmers will likely require the proof of its utility to improve plant growth and soil quality. In this context, we conducted a four-year field experiment between October 2010 to October 2014 on a fertile silty clay loam Albeluvisol in Norway to assess the impact of biochar on soil physical properties, soil microbial biomass, and oat and barley yield. The following treatments were included: Control (soil), miscanthus biochar 8 t C ha −1 (BC8), miscanthus straw feedstock 8 t C ha −1 (MC8), and miscanthus biochar 25 t C ha −1 (BC25). Average volumetric water content at field capacity was significantly higher in BC25 when compared to the control due to changes in BD and total porosity. The biochar amendment had no effect on soil aggregate (2–6 mm) stability, pore size distribution, penetration resistance, soil microbial biomass C and N, and basal respiration. Biochar did not alter crop yields of oat and barley during the four growing seasons. In order to realize biochar’s climate mitigation potential, we suggest future research and development efforts should focus on improving the agronomic utility of biochar in engineered fertilizer and soil amendment products.

Suggested Citation

  • Adam O’Toole & Christophe Moni & Simon Weldon & Anne Schols & Monique Carnol & Bernard Bosman & Daniel P. Rasse, 2018. "Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway," Agriculture, MDPI, vol. 8(11), pages 1-19, October.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:11:p:171-:d:178723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/11/171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/11/171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadaf Hashmi & Uzma Younis & Subhan Danish & Tariq Muhammad Munir, 2019. "Pongamia pinnata L. Leaves Biochar Increased Growth and Pigments Syntheses in Pisum sativum L. Exposed to Nutritional Stress," Agriculture, MDPI, vol. 9(7), pages 1-13, July.
    2. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    3. Muhammad Ayaz & Dalia Feizienė & Vita Tilvikienė & Kashif Akhtar & Urte Stulpinaitė & Rashid Iqbal, 2021. "Biochar Role in the Sustainability of Agriculture and Environment," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    4. Priya Saini & Jason P. de Koff & Richard Link & Chris Robbins, 2021. "Soil Health Beneath Amended Switchgrass: Effects of Biochar and Nitrogen on Active Carbon and Wet Aggregate Stability," Sustainability, MDPI, vol. 13(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    2. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    3. Lybbert, Travis & Sumner, Daniel, 2010. "Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion," Climate Change 320104, International Centre for Trade and Sustainable Development (ICTSD).
    4. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    5. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    7. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    8. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    9. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    10. Duku, Moses Hensley & Gu, Sai & Hagan, Essel Ben, 2011. "Biochar production potential in Ghana—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3539-3551.
    11. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    12. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    13. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    14. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    15. Eugene Balashov & Natalya Buchkina & Vladimír Šimanský & Ján Horák, 2022. "Effects of Slow Pyrolysis Biochar on CO 2 Emissions from Two Soils under Anaerobic Conditions," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
    16. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    17. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    18. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    19. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    20. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).

    More about this item

    Keywords

    biochar; miscanthus; Norway;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:11:p:171-:d:178723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.