IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp572-583.html
   My bibliography  Save this article

Distributed solar photovoltaics in China: Policies and economic performance

Author

Listed:
  • Zhao, Xingang
  • Zeng, Yiping
  • Zhao, Di

Abstract

The recent rapid development of distributed PV (photovoltaic) industry in China closely ties to the relevant policies support. This paper reviews some main points of relevant policies including financial support, technology innovation and management improvement. Scenario analysis both in residential sectors and industrial and commercial sectors are taken into account. We calculate IRR (internal rate of return) and static payback period of a specific distributed PV system in China's five cities located in different resource areas. In order to provide a realistic reference for investors, the historical data from real projects are used to calculate the generating capacity. The impacts of relevant policy variables such as subsidies, benchmark price, electricity price and tax on economic performance of distributed PV system are discussed. The results show that distributed PV system with high generation efficiency has produced good economic benefit in both two scenarios under China's current policies. The current policy instruments on distributed PV industry are efficient. At the end of the paper, policy recommendations are offered as references for the government.

Suggested Citation

  • Zhao, Xingang & Zeng, Yiping & Zhao, Di, 2015. "Distributed solar photovoltaics in China: Policies and economic performance," Energy, Elsevier, vol. 88(C), pages 572-583.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:572-583
    DOI: 10.1016/j.energy.2015.05.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Castro-Gil, Manuel, 2012. "Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency," Energy Policy, Elsevier, vol. 51(C), pages 749-764.
    2. Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
    3. Holdermann, Claudius & Kissel, Johannes & Beigel, Jürgen, 2014. "Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors," Energy Policy, Elsevier, vol. 67(C), pages 612-617.
    4. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
    5. Li, Aijun & Lin, Boqiang, 2013. "Comparing climate policies to reduce carbon emissions in China," Energy Policy, Elsevier, vol. 60(C), pages 667-674.
    6. Iliopoulos, Constantine & Rozakis, Stelios, 2010. "Environmental cost-effectiveness of bio diesel production in Greece: Current policies and alternative scenarios," Energy Policy, Elsevier, vol. 38(2), pages 1067-1078, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    2. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    3. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
    4. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Lee, Minhyun, 2017. "An economic impact analysis of residential progressive electricity tariffs in implementing the building-integrated photovoltaic blind using an advanced finite element model," Applied Energy, Elsevier, vol. 202(C), pages 259-274.
    5. Hancevic, Pedro I. & Nuñez, Hector M. & Rosellon, Juan, 2017. "Distributed photovoltaic power generation: Possibilities, benefits, and challenges for a widespread application in the Mexican residential sector," Energy Policy, Elsevier, vol. 110(C), pages 478-489.
    6. de Faria, Haroldo & Trigoso, Federico B.M. & Cavalcanti, João A.M., 2017. "Review of distributed generation with photovoltaic grid connected systems in Brazil: Challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 469-475.
    7. Chaianong, Aksornchan & Bangviwat, Athikom & Menke, Christoph & Breitschopf, Barbara & Eichhammer, Wolfgang, 2020. "Customer economics of residential PV–battery systems in Thailand," Renewable Energy, Elsevier, vol. 146(C), pages 297-308.
    8. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    9. Timilsina,Govinda R., 2021. "Economics of Distributed Photovoltaics : An Illustration from Bangladesh," Policy Research Working Paper Series 9699, The World Bank.
    10. Dufo-López, Rodolfo & Bernal-Agustín, José L., 2015. "A comparative assessment of net metering and net billing policies. Study cases for Spain," Energy, Elsevier, vol. 84(C), pages 684-694.
    11. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    12. Xin-gang, Zhao & Zhen, Wang, 2019. "Technology, cost, economic performance of distributed photovoltaic industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 53-64.
    13. Yunna Wu & Jianli Zhou & Yong Hu & Lingwenying Li & Xiaokun Sun, 2018. "A TODIM-Based Investment Decision Framework for Commercial Distributed PV Projects under the Energy Performance Contracting (EPC) Business Model: A Case in East-Central China," Energies, MDPI, vol. 11(5), pages 1-27, May.
    14. Vilaça Gomes, P. & Knak Neto, N. & Carvalho, L. & Sumaili, J. & Saraiva, J.T. & Dias, B.H. & Miranda, V. & Souza, S.M., 2018. "Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues," Energy Policy, Elsevier, vol. 115(C), pages 199-206.
    15. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    16. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    17. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    18. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    19. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    20. Oliva H, Sebastian, 2018. "Assessing the growth of residential PV exports with energy efficiency and the opportunity for local generation network credits," Renewable Energy, Elsevier, vol. 121(C), pages 451-459.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:572-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.