IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p1146-1154.html
   My bibliography  Save this article

Analysis of design parameters of large-sized wind turbines by non-dimensional model

Author

Listed:
  • de Medeiros, Armando Lúcio Ramos
  • Araújo, Alex Maurício
  • de Oliveira Filho, Oyama Douglas Queiroz
  • Rohatgi, Janardan
  • dos Santos, Maurílio José

Abstract

This paper presents a simplified non-dimensional model to estimate capacity factor for megawatt-sized VSVP (variable speed variable pitch) wind turbines. Instead of cut-in (Vin), rated (Vr) and cut-out (Vout) speeds of a wind turbine a non-dimensional speed parameter (x) defined as the ratio of the wind speed to the mean wind speed (Vm) is employed. Then the non-dimensional speed parameters become: xin (=Vin/Vm), xr (=Vr/Vm), and xout (=Vout/Vm). The wind speed distribution is characterized by Weibull shape parameter k. It is shown that the CF (capacity factor) depends only on k and Vr. In this way the model is independent of the mean wind speed of the site. However, these simplifications does introduce small error in the estimation of the capacity factor, but of little significance. The model shows three important points: 1) There is an optimum relation between xr and k represented by a six-degree polynomial indicating optimum value of the CF. This implies that the design parameters of a wind turbine should be selected on the basis of k; 2) The capacity factor increases with the decreasing value of the xr. This decrease in xr can either be achieved by increasing Vm or by decreasing Vr.

Suggested Citation

  • de Medeiros, Armando Lúcio Ramos & Araújo, Alex Maurício & de Oliveira Filho, Oyama Douglas Queiroz & Rohatgi, Janardan & dos Santos, Maurílio José, 2015. "Analysis of design parameters of large-sized wind turbines by non-dimensional model," Energy, Elsevier, vol. 93(P1), pages 1146-1154.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:1146-1154
    DOI: 10.1016/j.energy.2015.09.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215013419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abed, K.A. & El-Mallah, A.A., 1997. "Capacity factor of wind turbines," Energy, Elsevier, vol. 22(5), pages 487-491.
    2. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    3. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    4. Hu, Ssu-yuan & Cheng, Jung-ho, 2007. "Performance evaluation of pairing between sites and wind turbines," Renewable Energy, Elsevier, vol. 32(11), pages 1934-1947.
    5. Juárez, Alberto Aquino & Araújo, Alex Maurício & Rohatgi, Janardan Singh & de Oliveira Filho, Oyama Douglas Queiroz, 2014. "Development of the wind power in Brazil: Political, social and technical issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 828-834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Ko Hsu & Chung-Kee Yeh, 2021. "Offshore Wind Potential of West Central Taiwan: A Case Study," Energies, MDPI, vol. 14(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Dongran & Yang, Yinggang & Zheng, Songyue & Tang, Weiyi & Yang, Jian & Su, Mei & Yang, Xuebing & Joo, Young Hoon, 2019. "Capacity factor estimation of variable-speed wind turbines considering the coupled influence of the QN-curve and the air density," Energy, Elsevier, vol. 183(C), pages 1049-1060.
    2. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    3. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    4. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    5. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors," Energies, MDPI, vol. 9(7), pages 1-18, June.
    6. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Zhang, Huiming & Zheng, Yu & Ozturk, U. Aytun & Li, Shanjun, 2016. "The impact of subsidies on overcapacity: A comparison of wind and solar energy companies in China," Energy, Elsevier, vol. 94(C), pages 821-827.
    8. Masseran, Nurulkamal, 2015. "Evaluating wind power density models and their statistical properties," Energy, Elsevier, vol. 84(C), pages 533-541.
    9. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    11. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    12. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    13. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    15. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    16. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    17. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    18. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    19. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    20. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:1146-1154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.