The effects of current water management practices on methane emissions in Japanese rice cultivation
Author
Abstract
Suggested Citation
DOI: 10.1007/s11027-015-9665-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Keijiro Otsuka & Takashi Yamano, 2006. "Introduction to the special issue on the role of nonfarm income in poverty reduction: evidence from Asia and East Africa," Agricultural Economics, International Association of Agricultural Economists, vol. 35(s3), pages 393-397, November.
- A.K. Misra & Maitri Verma, 2014. "Modeling the impact of mitigation options on methane abatement from rice fields," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 927-945, October.
- Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
- Xu, Shangping & Jaffé, Peter R. & Mauzerall, Denise L., 2007. "A process-based model for methane emission from flooded rice paddy systems," Ecological Modelling, Elsevier, vol. 205(3), pages 475-491.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jing-Li Fan & Qian Wang & Xian Zhang, 2021. "A bibliometric analysis of the water-energy-food nexus based on the SCIE and SSCI database of the Web of Science," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(2), pages 1-26, February.
- Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
- Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
- Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
- Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
- Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
- Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
- Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
- Ponsioen, Thomas C. & Hengsdijk, Huib & Wolf, Joost & van Ittersum, Martin K. & Rotter, Reimund P. & Son, Tran Thuc & Laborte, Alice G., 2006. "TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia," Agricultural Systems, Elsevier, vol. 87(1), pages 80-100, January.
- Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
- Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
- Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
- Wang, Hong & Zhang, Yan & Zhang, Yaojun & McDaniel, Marshall D. & Sun, Lan & Su, Wei & Fan, Xiaorong & Liu, Shuhua & Xiao, Xin, 2020. "Water-saving irrigation is a ‘win-win’ management strategy in rice paddies – With both reduced greenhouse gas emissions and enhanced water use efficiency," Agricultural Water Management, Elsevier, vol. 228(C).
- Nittaya Cha-un & Amnat Chidthaisong & Kazuyuki Yagi & Sirintornthep Towprayoon, 2021. "Simulating the Long-Term Effects of Fertilizer and Water Management on Grain Yield and Methane Emissions of Paddy Rice in Thailand," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
- Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
- Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
- Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
- Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
- Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.
- Briones, Roehlano & Felipe, Jesus, 2013.
"Agriculture and Structural Transformation in Developing Asia: Review and Outlook,"
ADB Economics Working Paper Series
363, Asian Development Bank.
- Roehlano M. Briones & Jesus Felipe, 2016. "Agriculture and Structural Transformation in Developing Asia: Review and Outlook," Working Papers id:8696, eSocialSciences.
- Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
More about this item
Keywords
Continuous flooding; Methane emissions; Midseason drainage; National soil survey; Paddy fields in Japan; Soil groups;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:22:y:2017:i:1:d:10.1007_s11027-015-9665-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.