IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v19y2014i7p1109-1117.html
   My bibliography  Save this article

Effect of light supply on CO 2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata

Author

Listed:
  • J. Pires
  • A. Gonçalves
  • F. Martins
  • M. Alvim-Ferraz
  • M. Simões

Abstract

Carbon dioxide (CO 2 ) is one of the primary greenhouse gases that contribute to climate change. Consequently, emission reduction technologies will be needed to reduce CO 2 atmospheric concentration. Microalgae may have an important role in this context. They are photosynthetic microorganisms that are able to fix atmospheric CO 2 using solar energy with efficiency ten times higher than terrestrial plants. The objectives of this study were: (i) to analyse the effect of light supply on the growth of Chlorella vulgaris and Pseudokirchneriella subcapitata; (ii) to assess the atmospheric CO 2 capture by these microalgae; and (iii) to determine the parameters of the Monod model that describe the influence of irradiance on the growth of the selected microalgae. Both microalgae presented higher growth rates with high irradiance values and discontinuous light supply. The continuous supply of light at the highest irradiance value was not beneficial for C. vulgaris due to photooxidation. Additionally, C. vulgaris achieved the highest CO 2 fixation rate with the value of 0.305 g-CO 2 L −1 d −1 . The parameters of the Monod model demonstrated that C. vulgaris can achieve higher specific growth rates (and higher CO 2 fixation rates) if cultivated under higher irradiances than the studied values. The presented results showed that microalgal culture is a promising strategy for CO 2 capture from atmosphere. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • J. Pires & A. Gonçalves & F. Martins & M. Alvim-Ferraz & M. Simões, 2014. "Effect of light supply on CO 2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1109-1117, October.
  • Handle: RePEc:spr:masfgc:v:19:y:2014:i:7:p:1109-1117
    DOI: 10.1007/s11027-013-9463-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-013-9463-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-013-9463-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sophie Fon Sing & Andreas Isdepsky & Michael Borowitzka & Navid Moheimani, 2013. "Production of biofuels from microalgae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 47-72, January.
    2. Andre DuPont, 2013. "Best practices for the sustainable production of algae-based biofuel in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 97-111, January.
    3. David Keith & Minh Ha-Duong & Joshua K. Stolaroff, 2006. "Climate strategy with CO2 capture from the air," Post-Print halshs-00003926, HAL.
    4. Pires, J.C.M. & Alvim-Ferraz, M.C.M. & Martins, F.G. & Simões, M., 2012. "Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3043-3053.
    5. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
    6. Fergola, P. & Cerasuolo, M. & Pollio, A. & Pinto, G. & DellaGreca, M., 2007. "Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model," Ecological Modelling, Elsevier, vol. 208(2), pages 205-214.
    7. H. Chanakya & Durga Mahapatra & R. Sarada & R. Abitha, 2013. "Algal biofuel production and mitigation potential in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 113-136, January.
    8. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    9. Uday Singh & A. Ahluwalia, 2013. "Microalgae: a promising tool for carbon sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 73-95, January.
    10. Russell Chapman, 2013. "Algae: the world’s most important “plants”—an introduction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 5-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amel Benasla & Robert Hausler, 2020. "Growth and Production of Lipids in Raphidocelis subcapitata Immobilized in Sodium Alginate Beads," Energies, MDPI, vol. 13(2), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
    2. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    3. Gregory F. Nemet and Adam R. Brandt, 2012. "Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO2 Air Capture," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Yu-Fu Chen & Michael Funke & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," Dundee Discussion Papers in Economics 262, Economic Studies, University of Dundee.
    5. Zeng, Xianhai & Guo, Xiaoyi & Su, Gaomin & Danquah, Michael K. & Zhang, Shiduo & Lu, Yinghua & Sun, Yong & Lin, Lu, 2015. "Bioprocess considerations for microalgal-based wastewater treatment and biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1385-1392.
    6. Moriarty, Patrick & Honnery, Damon, 2010. "A human needs approach to reducing atmospheric carbon," Energy Policy, Elsevier, vol. 38(2), pages 695-700, February.
    7. Naomi Vaughan & Timothy Lenton, 2011. "A review of climate geoengineering proposals," Climatic Change, Springer, vol. 109(3), pages 745-790, December.
    8. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    9. Renforth, P. & Jenkins, B.G. & Kruger, T., 2013. "Engineering challenges of ocean liming," Energy, Elsevier, vol. 60(C), pages 442-452.
    10. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    11. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    12. Hoel, Michael, 2016. "Optimal control theory with applications to resource and environmental economics," Memorandum 08/2016, Oslo University, Department of Economics.
    13. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    14. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    15. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    16. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    17. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    18. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    19. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    20. Seiichi KATAYAMA & Ngo Van LONG & Hiroshi OHTA, 2013. "Carbon Taxes in a Trading World," GSICS Working Paper Series 26, Graduate School of International Cooperation Studies, Kobe University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:19:y:2014:i:7:p:1109-1117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.