IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v18y2013i1p5-12.html
   My bibliography  Save this article

Algae: the world’s most important “plants”—an introduction

Author

Listed:
  • Russell Chapman

Abstract

Early in the history of life, algae changed the planet’s atmosphere by producing oxygen, thus paving the way for the evolution of eukaryotic organisms. In an era in which the consumption of fossil fuels is a prime topic of concern, few people realize that the oil we currently exploit comes mostly from Cretaceous deposits of marine algae. Moving from ancient times to the present, the algae remain more important than most people realize. Today, the production of oxygen by algae (ca. 50% of all oxygen production) is another reason for saying “our lives depend on algae.” Those who love seafood should thank the algae because algae are the primary producers upon which aquatic ecosystems depend. Thanks should come from all who are vegetarians or omnivores, because all land plants derive from a freshwater class of green algae and all land-animals—including the cows that provide the steaks for meat-lovers—depend directly or indirectly on land plants for food and often for shelter as well. As we use up the oil deposits provided by the ancient algae, we are turning to the modern algae for help. Given the photosynthetic abilities of the algae, they are one of the major focuses for sustainable biofuel production and CO 2 consumption. Finally, the algae that give us the air we breathe, the food we eat, and the fuel for our cars (past and, perhaps, future), are also a source of active pharmaceutical compounds that can be used against drug-resistant bacterial strains, viruses (including Herpes Simplex and AIDS), and cancers. Roses are pretty and oak trees are impressive, but no other groups of “plants” have done so much, for so long, and, for so many as have the algae! Copyright The Author(s) 2013

Suggested Citation

  • Russell Chapman, 2013. "Algae: the world’s most important “plants”—an introduction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 5-12, January.
  • Handle: RePEc:spr:masfgc:v:18:y:2013:i:1:p:5-12
    DOI: 10.1007/s11027-010-9255-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-010-9255-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-010-9255-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee R. Kump, 2008. "The rise of atmospheric oxygen," Nature, Nature, vol. 451(7176), pages 277-278, January.
    2. Charles H. Wellman & Peter L. Osterloff & Uzma Mohiuddin, 2003. "Fragments of the earliest land plants," Nature, Nature, vol. 425(6955), pages 282-285, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Pires & A. Gonçalves & F. Martins & M. Alvim-Ferraz & M. Simões, 2014. "Effect of light supply on CO 2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1109-1117, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke-Qing Xiao & Oliver W. Moore & Peyman Babakhani & Lisa Curti & Caroline L. Peacock, 2022. "Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhiping Yang & Xiaoya Ma & Qiuping Wang & Xiaolin Tian & Jingyan Sun & Zhenhua Zhang & Shuhai Xiao & Olivier Clerck & Frederik Leliaert & Bojian Zhong, 2023. "Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Rayanne Vitali & Claire M. Belcher & Jed O. Kaplan & Andrew J. Watson, 2022. "Increased fire activity under high atmospheric oxygen concentrations is compatible with the presence of forests," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Daniel R. Hummer & Joshua J. Golden & Grethe Hystad & Robert T. Downs & Ahmed Eleish & Chao Liu & Jolyon Ralph & Shaunna M. Morrison & Michael B. Meyer & Robert M. Hazen, 2022. "Evidence for the oxidation of Earth’s crust from the evolution of manganese minerals," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Qiao Wen Tan & Peng Ken Lim & Zhong Chen & Asher Pasha & Nicholas Provart & Marius Arend & Zoran Nikoloski & Marek Mutwil, 2023. "Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Huyue Song & Zhihui An & Qin Ye & Eva E. Stüeken & Jing Li & Jun Hu & Thomas J. Algeo & Li Tian & Daoliang Chu & Haijun Song & Shuhai Xiao & Jinnan Tong, 2023. "Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Kumar, Satish & Cuntz, Manfred & Musielak, Zdzislaw E., 2015. "Fractal and multifractal analysis of the rise of oxygen in Earth’s early atmosphere," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 296-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:18:y:2013:i:1:p:5-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.