IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v15y2010i3p241-262.html
   My bibliography  Save this article

Global and regional potential for bioenergy from agricultural and forestry residue biomass

Author

Listed:
  • Jay Gregg
  • Steven Smith

Abstract

No abstract is available for this item.

Suggested Citation

  • Jay Gregg & Steven Smith, 2010. "Global and regional potential for bioenergy from agricultural and forestry residue biomass," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(3), pages 241-262, March.
  • Handle: RePEc:spr:masfgc:v:15:y:2010:i:3:p:241-262
    DOI: 10.1007/s11027-010-9215-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-010-9215-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-010-9215-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    2. Edmonds, Jae & Clarke, John & Dooley, James & Kim, Son H. & Smith, Steven J., 2004. "Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies," Energy Economics, Elsevier, vol. 26(4), pages 517-537, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Wenjuan & Han, Lujia & Liu, Xian & Huang, Guangqun & Chen, Longjian & Xiao, Weihua & Yang, Zengling, 2016. "Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China's crop residues," Energy, Elsevier, vol. 100(C), pages 238-250.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    3. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    4. Young, Jesse D. & Anderson, Nathaniel M. & Naughton, Helen T. & Mullan, Katrina, 2018. "Economic and policy factors driving adoption of institutional woody biomass heating systems in the U.S," Energy Economics, Elsevier, vol. 69(C), pages 456-470.
    5. Marco Pastori & Angel Udias & Luigi Cattaneo & Magda Moner-Girona & Awa Niang & Cesar Carmona-Moreno, 2021. "Bioenergy Potential of Crop Residues in the Senegal River Basin: A Cropland–Energy–Water-Environment Nexus Approach," Sustainability, MDPI, vol. 13(19), pages 1-23, October.
    6. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    7. Lalisa Duguma & Esther Kamwilu & Peter A Minang & Judith Nzyoka & Kennedy Muthee, 2020. "Ecosystem-Based Approaches to Bioenergy and the Need for Regenerative Supply Options for Africa," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    8. Moritz Pollack & Andrea Lück & Mario Wolf & Eckhard Kraft & Conrad Völker, 2023. "Energy and Business Synergy: Leveraging Biogenic Resources from Agriculture, Waste, and Wastewater in German Rural Areas," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    9. Ngusale, George K. & Luo, Yonghao & Kiplagat, Jeremiah K., 2014. "Briquette making in Kenya: Nairobi and peri-urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 749-759.
    10. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    11. Douwe F. A. van der Kroft & Jeroen F. J. Pruyn, 2021. "A Study into the Availability, Costs and GHG Reduction in Drop-In Biofuels for Shipping under Different Regimes between 2020 and 2050," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    12. Steef V. Hanssen & Vassilis Daioglou & Zoran J. N. Steinmann & Stefan Frank & Alexander Popp & Thierry Brunelle & Pekka Lauri & Tomoko Hasegawa & Mark A. J. Huijbregts & Detlef P. Vuuren, 2020. "Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models," Climatic Change, Springer, vol. 163(3), pages 1569-1586, December.
    13. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    14. Winchester, Niven & Reilly, John M., 2015. "The feasibility, costs, and environmental implications of large-scale biomass energy," Energy Economics, Elsevier, vol. 51(C), pages 188-203.
    15. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    16. Page Kyle & Leon Clarke & Steven J. Smith & Son Kim & Mayda Nathan & Marshall Wise, 2011. "The Value of Advanced End-Use Energy Technologies in Meeting U.S. Climate Policy Goals," The Energy Journal, , vol. 32(1_suppl), pages 61-88, June.
    17. Aguilar, Francisco X. & Goerndt, Michael E. & Song, Nianfu & Shifley, Stephen, 2012. "Internal, external and location factors influencing cofiring of biomass with coal in the U.S. northern region," Energy Economics, Elsevier, vol. 34(6), pages 1790-1798.
    18. Graham, Neal T. & Gakkhar, Nikhil & Singh, Akash Deep & Evans, Meredydd & Stelmach, Tanner & Durga, Siddarth & Godara, Rakesh & Gajera, Bhautik & Wise, Marshall & Sarma, Anil K., 2022. "Integrated analysis of increased bioenergy futures in India," Energy Policy, Elsevier, vol. 168(C).
    19. Ben Daya, Bechir & Nourelfath, Mustapha, 2019. "Sustainability assessment of integrated forest biorefinery implemented in Canadian pulp and paper mills," International Journal of Production Economics, Elsevier, vol. 214(C), pages 248-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beghin, John C. & Jensen, Helen H., 2008. "Farm policies and added sugars in US diets," Food Policy, Elsevier, vol. 33(6), pages 480-488, December.
    2. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    3. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    4. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    5. Pierre-André Jouvet & Marie Renner, 2014. "Social Acceptance and Optimal Pollution: CCS or Tax?," Post-Print hal-01385960, HAL.
    6. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    7. Sergio Madrid, 2005. "Discussion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 7(3), pages 401-415, September.
    8. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    9. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    10. R. Lal, 2007. "Carbon Management in Agricultural Soils," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 303-322, February.
    11. Kirby, Natasha & Davison, Matt, 2010. "Using a spark-spread valuation to investigate the impact of corn-gasoline correlation on ethanol plant valuation," Energy Economics, Elsevier, vol. 32(6), pages 1221-1227, November.
    12. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.
    13. Hwang, Jenn-Jiang, 2013. "Sustainability study of hydrogen pathways for fuel cell vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 220-229.
    14. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
    15. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    16. Krumdieck, S. & Page, S., 2013. "Retro-analysis of liquid bio-ethanol and bio-diesel in New Zealand," Energy Policy, Elsevier, vol. 62(C), pages 363-371.
    17. Kohko Tokushige & Keigo Akimoto & Toshimasa Tomoda, 2007. "Public acceptance and risk-benefit perception of CO 2 geological storage for global warming mitigation in Japan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1237-1251, August.
    18. Ayong Le Kama, Alain & Fodha, Mouez & Lafforgue, Gilles, 2009. "Optimal Carbon Capture and Storage Policies," TSE Working Papers 09-095, Toulouse School of Economics (TSE).
    19. Miranda-da-Cruz, Sergio M., 2007. "A model approach for analysing trends in energy supply and demand at country level: Case study of industrial development in China," Energy Economics, Elsevier, vol. 29(4), pages 913-933, July.
    20. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:15:y:2010:i:3:p:241-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.