IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v32y2011i1_supplp61-88.html
   My bibliography  Save this article

The Value of Advanced End-Use Energy Technologies in Meeting U.S. Climate Policy Goals

Author

Listed:
  • Page Kyle
  • Leon Clarke
  • Steven J. Smith
  • Son Kim
  • Mayda Nathan
  • Marshall Wise

Abstract

This study, a contribution to the EMF 25 scenarios on the role of energy efficiency in climate change mitigation, explores the value of technological improvement in the buildings, industry, and transportation sectors in meeting 2050 CO2 emissions mitigation targets in the United States. Six scenarios of future end-use technology evolution are analyzed without any future emissions mitigation policy, and with two linear emissions constraints that begin in 2012 and achieve 50% and 80% reductions from 1990 CO2 emissions levels in 2050.The scenarios show that end-use technologies are important for reducing near-term energy demand and CO2 emissions, and advanced transportation technologies in particular are important for allowing the energy system as a whole to achieve deep emissions reductions in a cost-effective manner. Total discounted economic costs of meeting the emissions constraints are reduced by up to 53% by advanced end-use technologies, and similar cost reductions are observed when the policies allow intertemporal shifting in the emissions pathways (i.e., banking and borrowing). The scenarios highlight the importance of end-use technologies that facilitate electrification and decrease the direct use of hydrocarbon fuels through efficiency improvement, but we stress that end-use technology advancement should be complementary to technology advancement in energy supply. doi: 10.5547/ISSN0195-6574-EJ-Vol32-SI1-5

Suggested Citation

  • Page Kyle & Leon Clarke & Steven J. Smith & Son Kim & Mayda Nathan & Marshall Wise, 2011. "The Value of Advanced End-Use Energy Technologies in Meeting U.S. Climate Policy Goals," The Energy Journal, , vol. 32(1_suppl), pages 61-88, June.
  • Handle: RePEc:sae:enejou:v:32:y:2011:i:1_suppl:p:61-88
    DOI: 10.5547/ISSN0195-6574-EJ-Vol32-SI1-5
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol32-SI1-5
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol32-SI1-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brown, Marilyn A., 2001. "Market failures and barriers as a basis for clean energy policies," Energy Policy, Elsevier, vol. 29(14), pages 1197-1207, November.
    2. Paul L. Joskow & Donald B. Marron, 1992. "What Does a Negawatt Really Cost? Evidence from Utility Conservation Programs," The Energy Journal, , vol. 13(4), pages 41-74, October.
    3. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    4. Adam B. Jaffe & Robert N. Stavins, 1994. "Energy-Efficiency Investments and Public Policy," The Energy Journal, , vol. 15(2), pages 43-65, April.
    5. Jay Gregg & Steven Smith, 2010. "Global and regional potential for bioenergy from agricultural and forestry residue biomass," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(3), pages 241-262, March.
    6. Page Kyle & Leon Clarke & Fang Rong & Steven J. Smith, 2010. "Climate Policy and the Long-Term Evolution of the U.S. Buildings Sector," The Energy Journal, , vol. 31(2), pages 145-172, April.
    7. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nilsson, Mats, 2007. "Red light for Green Paper: The EU policy on energy efficiency," Energy Policy, Elsevier, vol. 35(1), pages 540-547, January.
    2. Schmidt, Stephan & Weigt, Hannes, 2013. "A Review on Energy Consumption from a Socio-Economic Perspective: Reduction through Energy Efficiency and Beyond," Working papers 2013/15, Faculty of Business and Economics - University of Basel.
    3. Dorothée Charlier & Alejandro Mosino & Aude Pommeret, 2011. "Energy-saving Technology Adoption under Uncertainty in the Residential Sector," Annals of Economics and Statistics, GENES, issue 103-104, pages 43-70.
    4. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    5. Anna Alberini, Will Gans, and Charles Towe, 2016. "Free Riding, Upsizing, and Energy Efficiency Incentives in Maryland Homes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Verbruggen, Aviel & Fischedick, Manfred & Moomaw, William & Weir, Tony & Nadaï, Alain & Nilsson, Lars J. & Nyboer, John & Sathaye, Jayant, 2010. "Renewable energy costs, potentials, barriers: Conceptual issues," Energy Policy, Elsevier, vol. 38(2), pages 850-861, February.
    7. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    8. Schueftan, Alejandra & Aravena, Claudia & Reyes, René, 2021. "Financing energy efficiency retrofits in Chilean households: The role of financial instruments, savings and uncertainty in energy transition," Resource and Energy Economics, Elsevier, vol. 66(C).
    9. Dobroschke, Stephan, 2012. "Energieeffizienzpotenziale und staatlicher Lenkungsbedarf," FiFo Discussion Papers - Finanzwissenschaftliche Diskussionsbeiträge 12-1, University of Cologne, FiFo Institute for Public Economics.
    10. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    11. Schleich, Joachim & Gruber, Edelgard, 2008. "Beyond case studies: Barriers to energy efficiency in commerce and the services sector," Energy Economics, Elsevier, vol. 30(2), pages 449-464, March.
    12. Sutherland, Ronald J, 1996. "The economics of energy conservation policy," Energy Policy, Elsevier, vol. 24(4), pages 361-370, April.
    13. Rosenow, Jan & Bayer, Edith, 2017. "Costs and benefits of Energy Efficiency Obligations: A review of European programmes," Energy Policy, Elsevier, vol. 107(C), pages 53-62.
    14. Schleich, Joachim, 2009. "Barriers to energy efficiency: A comparison across the German commercial and services sector," Ecological Economics, Elsevier, vol. 68(7), pages 2150-2159, May.
    15. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    16. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    17. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    18. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    19. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    20. Gale Boyd & Mark Curtis, 2013. "Evidence Of An Ï¿½Energy-Management Gap� In U.S. Manufacturing: Spillovers From Firm Management Practices To Energy Efficiency," Working Papers 13-25, Center for Economic Studies, U.S. Census Bureau.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:32:y:2011:i:1_suppl:p:61-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.