IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i2d10.1007_s10985-024-09617-y.html
   My bibliography  Save this article

The built-in selection bias of hazard ratios formalized using structural causal models

Author

Listed:
  • Richard A. J. Post

    (Eindhoven University of Technology)

  • Edwin R. den Heuvel

    (Eindhoven University of Technology)

  • Hein Putter

    (Leiden University Medical Center
    Leiden University)

Abstract

It is known that the hazard ratio lacks a useful causal interpretation. Even for data from a randomized controlled trial, the hazard ratio suffers from so-called built-in selection bias as, over time, the individuals at risk among the exposed and unexposed are no longer exchangeable. In this paper, we formalize how the expectation of the observed hazard ratio evolves and deviates from the causal effect of interest in the presence of heterogeneity of the hazard rate of unexposed individuals (frailty) and heterogeneity in effect (individual modification). For the case of effect heterogeneity, we define the causal hazard ratio. We show that the expected observed hazard ratio equals the ratio of expectations of the latent variables (frailty and modifier) conditionally on survival in the world with and without exposure, respectively. Examples with gamma, inverse Gaussian and compound Poisson distributed frailty and categorical (harming, beneficial or neutral) distributed effect modifiers are presented for illustration. This set of examples shows that an observed hazard ratio with a particular value can arise for all values of the causal hazard ratio. Therefore, the hazard ratio cannot be used as a measure of the causal effect without making untestable assumptions, stressing the importance of using more appropriate estimands, such as contrasts of the survival probabilities.

Suggested Citation

  • Richard A. J. Post & Edwin R. den Heuvel & Hein Putter, 2024. "The built-in selection bias of hazard ratios formalized using structural causal models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 404-438, April.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:2:d:10.1007_s10985-024-09617-y
    DOI: 10.1007/s10985-024-09617-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-024-09617-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-024-09617-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pål C Ryalen & Mats J Stensrud & Kjetil Røysland, 2018. "Transforming cumulative hazard estimates," Biometrika, Biometrika Trust, vol. 105(4), pages 905-916.
    2. Guanghui Wei & Douglas E. Schaubel, 2008. "Estimating Cumulative Treatment Effects in the Presence of Nonproportional Hazards," Biometrics, The International Biometric Society, vol. 64(3), pages 724-732, September.
    3. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    2. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    3. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    4. Benjamin R. Baer & Robert L. Strawderman & Ashkan Ertefaie, 2023. "Discussion on “Instrumental variable estimation of the causal hazard ratio,” by Linbo Wang, Eric Tchetgen Tchetgen, Torben Martinussen, and Stijn Vansteelandt," Biometrics, The International Biometric Society, vol. 79(2), pages 554-558, June.
    5. Bin Dong & David E. Matthews, 2012. "Empirical Likelihood for Cumulative Hazard Ratio Estimation with Covariate Adjustment," Biometrics, The International Biometric Society, vol. 68(2), pages 408-418, June.
    6. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    7. Lu Mao, 2023. "Study design for restricted mean time analysis of recurrent events and death," Biometrics, The International Biometric Society, vol. 79(4), pages 3701-3714, December.
    8. Shoubhik Mondal & Sundarraman Subramanian, 2016. "Simultaneous confidence bands for Cox regression from semiparametric random censorship," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 122-144, January.
    9. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    10. Mats J. Stensrud & Miguel A. Hernán & Eric J Tchetgen Tchetgen & James M. Robins & Vanessa Didelez & Jessica G. Young, 2021. "A generalized theory of separable effects in competing event settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 588-631, October.
    11. Min Zhang & Douglas E. Schaubel, 2012. "Double-Robust Semiparametric Estimator for Differences in Restricted Mean Lifetimes in Observational Studies," Biometrics, The International Biometric Society, vol. 68(4), pages 999-1009, December.
    12. Chengyuan Lu & Jelle Goeman & Hein Putter, 2023. "Maximum likelihood estimation in the additive hazards model," Biometrics, The International Biometric Society, vol. 79(3), pages 1646-1656, September.
    13. Shihong Zhu & Yifan Yang & Mai Zhou, 2015. "A note on the empirical likelihood confidence band for hazards ratio with covariate adjustment," Biometrics, The International Biometric Society, vol. 71(3), pages 859-563, September.
    14. Tat-Thang Vo & Hilary Davies-Kershaw & Ruth Hackett & Stijn Vansteelandt, 2022. "Longitudinal mediation analysis of time-to-event endpoints in the presence of competing risks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 380-400, July.
    15. Mariam O. Adeleke & Gianluca Baio & Aidan G. O'Keeffe, 2022. "Regression discontinuity designs for time‐to‐event outcomes: An approach using accelerated failure time models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1216-1246, July.
    16. Kevin He & Yun Li & Panduranga S. Rao & Randall S. Sung & Douglas E. Schaubel, 2020. "Prognostic score matching methods for estimating the average effect of a non-reversible binary time-dependent treatment on the survival function," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 451-470, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:2:d:10.1007_s10985-024-09617-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.