IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i3p1216-1246.html
   My bibliography  Save this article

Regression discontinuity designs for time‐to‐event outcomes: An approach using accelerated failure time models

Author

Listed:
  • Mariam O. Adeleke
  • Gianluca Baio
  • Aidan G. O'Keeffe

Abstract

Regression discontinuity designs (RDDs) have been developed for the estimation of treatment effects using observational data, where a treatment is administered using an externally defined decision rule, linked to a continuous assignment variable. Typically, RDDs have been applied to situations where the outcome of interest is continuous and non‐temporal. Conversely, RDDs for time‐to‐event outcomes have received less attention, despite such outcomes being common in many applications. We explore RDDs for a time‐to‐event outcome subject to right censoring. An accelerated failure time (AFT) approach is used to establish a treatment effect estimate for a fuzzy RDD (where treatment is not always strictly applied according to the decision rule). This estimation approach is robust to different levels of fuzziness and unobserved confounding, assessed using simulation studies and compares favourably to established structural AFT models. A motivating example is presented in which models are fitted to estimate the effect of metformin on mortality and cardiovascular disease rate using real observational data from UK Primary Care.

Suggested Citation

  • Mariam O. Adeleke & Gianluca Baio & Aidan G. O'Keeffe, 2022. "Regression discontinuity designs for time‐to‐event outcomes: An approach using accelerated failure time models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1216-1246, July.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:3:p:1216-1246
    DOI: 10.1111/rssa.12812
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12812
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sara Geneletti & Federico Ricciardi & Aidan G. O’Keeffe & Gianluca Baio, 2019. "Bayesian modelling for binary outcomes in the regression discontinuity design," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(3), pages 983-1002, June.
    2. Sebastian Calonico & Matias D. Cattaneo & Rocio Titiunik, 2014. "Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs," Econometrica, Econometric Society, vol. 82, pages 2295-2326, November.
    3. Jared D. Huling & Menggang Yu & A. James O'Malley, 2019. "Instrumental variable based estimation under the semiparametric accelerated failure time model," Biometrics, The International Biometric Society, vol. 75(2), pages 516-527, June.
    4. Xu, Ke-Li, 2017. "Regression discontinuity with categorical outcomes," Journal of Econometrics, Elsevier, vol. 201(1), pages 1-18.
    5. Geneletti, Sara & Baio, Gianluca & O'Keeffe, Aidan & Ricciardi, Federico, 2019. "Bayesian modelling for binary outcomes in the regression discontinuity design," LSE Research Online Documents on Economics 100096, London School of Economics and Political Science, LSE Library.
    6. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    7. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    8. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    9. Paul Clarke & Frank Windmeijer, 2009. "Identification of Causal Effects on Binary Outcomes Using Structural Mean Models," The Centre for Market and Public Organisation 09/217, The Centre for Market and Public Organisation, University of Bristol, UK.
    10. S. Vansteelandt & E. Goetghebeur, 2003. "Causal inference with generalized structural mean models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 817-835, November.
    11. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    12. Geneletti, Sara & O'Keeffe, Aidan G. & Sharples, Linda D. & Richardson, Sylvia & Baio, Gianluca, 2015. "Bayesian regression discontinuity designs: incorporating clinical knowledge in the causal analysis of primary care data," LSE Research Online Documents on Economics 65600, London School of Economics and Political Science, LSE Library.
    13. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    14. Jacob Bor & Matthew P Fox & Sydney Rosen & Atheendar Venkataramani & Frank Tanser & Deenan Pillay & Till Bärnighausen, 2017. "Treatment eligibility and retention in clinical HIV care: A regression discontinuity study in South Africa," PLOS Medicine, Public Library of Science, vol. 14(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gurgand, Marc & Lorenceau, Adrien & Mélonio, Thomas, 2023. "Student loans: Credit constraints and higher education in South Africa," Journal of Development Economics, Elsevier, vol. 161(C).
    2. Xu, Ke-Li, 2018. "A semi-nonparametric estimator of regression discontinuity design with discrete duration outcomes," Journal of Econometrics, Elsevier, vol. 206(1), pages 258-278.
    3. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    4. Davezies, Laurent & Le Barbanchon, Thomas, 2017. "Regression discontinuity design with continuous measurement error in the running variable," Journal of Econometrics, Elsevier, vol. 200(2), pages 260-281.
    5. Yoichi Arai & Yu‐Chin Hsu & Toru Kitagawa & Ismael Mourifié & Yuanyuan Wan, 2022. "Testing identifying assumptions in fuzzy regression discontinuity designs," Quantitative Economics, Econometric Society, vol. 13(1), pages 1-28, January.
    6. Goeun Lee & Myoung-jae Lee, 2023. "Regression Discontinuity for Binary Response and Local Maximum Likelihood Estimator to Extrapolate Treatment," Evaluation Review, , vol. 47(2), pages 182-208, April.
    7. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    8. 'Agoston Reguly, 2021. "Heterogeneous Treatment Effects in Regression Discontinuity Designs," Papers 2106.11640, arXiv.org, revised Oct 2021.
    9. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    10. Geneletti, Sara & Baio, Gianluca & O'Keeffe, Aidan & Ricciardi, Federico, 2019. "Bayesian modelling for binary outcomes in the regression discontinuity design," LSE Research Online Documents on Economics 100096, London School of Economics and Political Science, LSE Library.
    11. Dean Eckles & Nikolaos Ignatiadis & Stefan Wager & Han Wu, 2020. "Noise-Induced Randomization in Regression Discontinuity Designs," Papers 2004.09458, arXiv.org, revised Nov 2023.
    12. Yang Lixiong, 2019. "Regression discontinuity designs with unknown state-dependent discontinuity points: estimation and testing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-18, April.
    13. Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
    14. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1577-1608.
    15. Christopher S. Carpenter & Carlos Dobkin & Casey Warman, 2016. "The Mechanisms of Alcohol Control," Journal of Human Resources, University of Wisconsin Press, vol. 51(2), pages 328-356.
    16. Hızıroğlu Aygün, Aysun & Kırdar, Murat Güray & Koyuncu, Murat & Stoeffler, Quentin, 2024. "Keeping refugee children in school and out of work: Evidence from the world's largest humanitarian cash transfer program," Journal of Development Economics, Elsevier, vol. 168(C).
    17. Mellace, Giovanni & Ventura, Marco, 2019. "Intended and unintended effects of public incentives for innovation. Quasi-experimental evidence from Italy," Discussion Papers on Economics 9/2019, University of Southern Denmark, Department of Economics.
    18. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    19. Volker Schöer & Debra Shepherd, 2013. "Compulsory tutorial programmes and performance in undergraduate microeconomics: A regression discontinuity design," Working Papers 27/2013, Stellenbosch University, Department of Economics.
    20. Eduardo Fé & Bruce Hollingsworth, 2016. "Short- and long-run estimates of the local effects of retirement on health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1051-1067, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:3:p:1216-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.