IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i4d10.1007_s10985-021-09530-8.html
   My bibliography  Save this article

A generalized theory of separable effects in competing event settings

Author

Listed:
  • Mats J. Stensrud

    (Ecole Polytechnique Fédérale de Lausanne)

  • Miguel A. Hernán

    (Harvard T. H. Chan School of Public Health
    Harvard T. H. Chan School of Public Health
    Harvard T.H. Chan School of Public Health)

  • Eric J Tchetgen Tchetgen

    (University of Pennsylvania)

  • James M. Robins

    (Harvard T. H. Chan School of Public Health
    Harvard T. H. Chan School of Public Health
    Harvard T.H. Chan School of Public Health)

  • Vanessa Didelez

    (Leibniz Institute for Prevention Research and Epidemiology - BIPS
    University of Bremen)

  • Jessica G. Young

    (Harvard T. H. Chan School of Public Health
    Harvard T.H. Chan School of Public Health
    Harvard Medical School and Harvard Pilgrim Health Care Institute)

Abstract

In competing event settings, a counterfactual contrast of cause-specific cumulative incidences quantifies the total causal effect of a treatment on the event of interest. However, effects of treatment on the competing event may indirectly contribute to this total effect, complicating its interpretation. We previously proposed the separable effects to define direct and indirect effects of the treatment on the event of interest. This definition was given in a simple setting, where the treatment was decomposed into two components acting along two separate causal pathways. Here we generalize the notion of separable effects, allowing for interpretation, identification and estimation in a wide variety of settings. We propose and discuss a definition of separable effects that is applicable to general time-varying structures, where the separable effects can still be meaningfully interpreted as effects of modified treatments, even when they cannot be regarded as direct and indirect effects. For these settings we derive weaker conditions for identification of separable effects in studies where decomposed, or otherwise modified, treatments are not yet available; in particular, these conditions allow for time-varying common causes of the event of interest, the competing events and loss to follow-up. We also propose semi-parametric weighted estimators that are straightforward to implement. We stress that unlike previous definitions of direct and indirect effects, the separable effects can be subject to empirical scrutiny in future studies.

Suggested Citation

  • Mats J. Stensrud & Miguel A. Hernán & Eric J Tchetgen Tchetgen & James M. Robins & Vanessa Didelez & Jessica G. Young, 2021. "A generalized theory of separable effects in competing event settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 588-631, October.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:4:d:10.1007_s10985-021-09530-8
    DOI: 10.1007/s10985-021-09530-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09530-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09530-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhao Deng & Haoyu Wei & Xia Xiao & Yuan Zhang & Yuanmin Huang, 2024. "Sequential Ignorability and Dismissible Treatment Components to Identify Mediation Effects," Mathematics, MDPI, vol. 12(15), pages 1-20, July.
    2. Torben Martinussen & Mats Julius Stensrud, 2023. "Estimation of separable direct and indirect effects in continuous time," Biometrics, The International Biometric Society, vol. 79(1), pages 127-139, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    3. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    4. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    5. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    6. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    7. Guo, Jiaqi & Wang, Qiang & Li, Rongrong, 2024. "Can official development assistance promote renewable energy in sub-Saharan Africa countries? A matter of institutional transparency of recipient countries," Energy Policy, Elsevier, vol. 186(C).
    8. Munday, Tim & Brookes, James, 2021. "Mark my words: the transmission of central bank communication to the general public via the print media," Bank of England working papers 944, Bank of England.
    9. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    10. Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2024. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
    11. Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
    12. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    13. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    14. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    16. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    17. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    18. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    19. Benjamin R. Baer & Robert L. Strawderman & Ashkan Ertefaie, 2023. "Discussion on “Instrumental variable estimation of the causal hazard ratio,” by Linbo Wang, Eric Tchetgen Tchetgen, Torben Martinussen, and Stijn Vansteelandt," Biometrics, The International Biometric Society, vol. 79(2), pages 554-558, June.
    20. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:4:d:10.1007_s10985-021-09530-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.