IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v4y2017i1d10.1186_s40488-017-0057-4.html
   My bibliography  Save this article

Marginalized mixture models for count data from multiple source populations

Author

Listed:
  • Habtamu K. Benecha

    (USDA)

  • Brian Neelon

    (Medical University of South Carolina)

  • Kimon Divaris

    (University of North Carolina)

  • John S. Preisser

    (University of North Carolina)

Abstract

Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression.

Suggested Citation

  • Habtamu K. Benecha & Brian Neelon & Kimon Divaris & John S. Preisser, 2017. "Marginalized mixture models for count data from multiple source populations," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
  • Handle: RePEc:spr:jstada:v:4:y:2017:i:1:d:10.1186_s40488-017-0057-4
    DOI: 10.1186/s40488-017-0057-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-017-0057-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-017-0057-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    2. D. Böhning & E. Dietz & P. Schlattmann & L. Mendonça & U. Kirchner, 1999. "The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 195-209.
    3. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    4. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    5. David Todem & KyungMann Kim & Wei-Wen Hsu, 2016. "Marginal mean models for zero-inflated count data," Biometrics, The International Biometric Society, vol. 72(3), pages 986-994, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gul Inan & John Preisser & Kalyan Das, 2018. "A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 113-128, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    2. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    3. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    4. Moghimbeigi, Abbas & Eshraghian, Mohammad Reza & Mohammad, Kazem & McArdle, Brian, 2009. "A score test for zero-inflation in multilevel count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1239-1248, February.
    5. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    6. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    7. David Todem & Wei‐Wen Hsu & KyungMann Kim, 2023. "Nonparametric scanning tests of homogeneity for hierarchical models with continuous covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2063-2075, September.
    8. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    9. Jiang, Yuan & House, Lisa A., 2017. "Comparison of the Performance of Count Data Models under Different Zero-Inflation Scenarios Using Simulation Studies," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258342, Agricultural and Applied Economics Association.
    10. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    11. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    12. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
    13. Markus Jochmann, 2013. "What belongs where? Variable selection for zero-inflated count models with an application to the demand for health care," Computational Statistics, Springer, vol. 28(5), pages 1947-1964, October.
    14. T. Martin Lukusa & Shen-Ming Lee & Chin-Shang Li, 2016. "Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(4), pages 457-483, May.
    15. Baíllo, A. & Berrendero, J.R. & Cárcamo, J., 2009. "Tests for zero-inflation and overdispersion: A new approach based on the stochastic convex order," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2628-2639, May.
    16. Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
    17. A. Baccini & L. Barabesi & M. Cioni & C. Pisani, 2014. "Crossing the hurdle: the determinants of individual scientific performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 2035-2062, December.
    18. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    19. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    20. L. Elbakidze & Y. H. Jin, 2015. "Are Economic Development and Education Improvement Associated with Participation in Transnational Terrorism?," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1520-1535, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:4:y:2017:i:1:d:10.1186_s40488-017-0057-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.