IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v23y2018i1d10.1007_s13253-017-0314-5.html
   My bibliography  Save this article

A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model

Author

Listed:
  • Gul Inan

    (Middle East Technical University)

  • John Preisser

    (University of North Carolina)

  • Kalyan Das

    (University of Calcutta)

Abstract

Marginalized zero-inflated count regression models (Long et al. in Stat Med 33(29):5151–5165, 2014) provide direct inference on overall exposure effects. Unlike standard zero-inflated models, marginalized models specify a regression model component for the marginal mean in addition to a component for the probability of an excess zero. This study proposes a score test for testing a marginalized zero-inflated Poisson model against a marginalized zero-inflated negative binomial model for model selection based on an assessment of over-dispersion. The sampling distribution and empirical power of the proposed score test are investigated via a Monte Carlo simulation study, and the procedure is illustrated with data from a horticultural experiment. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Gul Inan & John Preisser & Kalyan Das, 2018. "A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 113-128, March.
  • Handle: RePEc:spr:jagbes:v:23:y:2018:i:1:d:10.1007_s13253-017-0314-5
    DOI: 10.1007/s13253-017-0314-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-017-0314-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-017-0314-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
    2. Habtamu K. Benecha & Brian Neelon & Kimon Divaris & John S. Preisser, 2017. "Marginalized mixture models for count data from multiple source populations," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    3. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    4. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    5. Yang, Zhao & Hardin, James W. & Addy, Cheryl L., 2010. "Score tests for overdispersion in zero-inflated Poisson mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1234-1246, May.
    6. David Todem & KyungMann Kim & Wei-Wen Hsu, 2016. "Marginal mean models for zero-inflated count data," Biometrics, The International Biometric Society, vol. 72(3), pages 986-994, September.
    7. Hossein Zamani & Noriszura Ismail, 2013. "Score test for testing zero-inflated Poisson regression against zero-inflated generalized Poisson alternatives," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2056-2068, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
    2. Loni Philip Tabb & Eric J. Tchetgen Tchetgen & Greg A. Wellenius & Brent A. Coull, 2016. "Marginalized Zero-Altered Models for Longitudinal Count Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 181-203, October.
    3. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    4. Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
    5. Habtamu K. Benecha & Brian Neelon & Kimon Divaris & John S. Preisser, 2017. "Marginalized mixture models for count data from multiple source populations," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    6. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    7. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    8. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    9. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    10. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Score tests for zero-inflated generalized Poisson mixed regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3478-3489, July.
    11. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    12. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    13. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    14. Yingye Zheng & Patrick J. Heagerty & Li Hsu & Polly A. Newcomb, 2010. "On Combining Family-Based and Population-Based Case–Control Data in Association Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1024-1033, December.
    15. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    16. Yu, Lei & Tyas, Suzanne L. & Snowdon, David A. & Kryscio, Richard J., 2009. "Effects of ignoring baseline on modeling transitions from intact cognition to dementia," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3334-3343, July.
    17. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    18. Jiang, Yuan & House, Lisa A., 2017. "Comparison of the Performance of Count Data Models under Different Zero-Inflation Scenarios Using Simulation Studies," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258342, Agricultural and Applied Economics Association.
    19. Stephane R. ROBIN, 2002. "The effect of supervision on Ph.D. duration, publications and job outcomes," LIDAM Discussion Papers IRES 2002041, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    20. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:23:y:2018:i:1:d:10.1007_s13253-017-0314-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.