A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model
Author
Abstract
Suggested Citation
DOI: 10.1007/s13253-017-0314-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David Todem & KyungMann Kim & Wei-Wen Hsu, 2016. "Marginal mean models for zero-inflated count data," Biometrics, The International Biometric Society, vol. 72(3), pages 986-994, September.
- Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
- Habtamu K. Benecha & Brian Neelon & Kimon Divaris & John S. Preisser, 2017. "Marginalized mixture models for count data from multiple source populations," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
- Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
- Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
- Yang, Zhao & Hardin, James W. & Addy, Cheryl L., 2010. "Score tests for overdispersion in zero-inflated Poisson mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1234-1246, May.
- Hossein Zamani & Noriszura Ismail, 2013. "Score test for testing zero-inflated Poisson regression against zero-inflated generalized Poisson alternatives," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2056-2068, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
- Loni Philip Tabb & Eric J. Tchetgen Tchetgen & Greg A. Wellenius & Brent A. Coull, 2016. "Marginalized Zero-Altered Models for Longitudinal Count Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 181-203, October.
- Habtamu K. Benecha & Brian Neelon & Kimon Divaris & John S. Preisser, 2017. "Marginalized mixture models for count data from multiple source populations," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
- Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
- Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
- J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
- Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
- Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
- Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
- Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
- Stephane R. ROBIN, 2002. "The effect of supervision on Ph.D. duration, publications and job outcomes," LIDAM Discussion Papers IRES 2002041, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
- Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
- Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
- Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
- Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
- Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
- Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
- Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
More about this item
Keywords
Count data; Excess zeros; Marginal models; Over-dispersion; Score test;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:23:y:2018:i:1:d:10.1007_s13253-017-0314-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.