IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v40y2018i3d10.1007_s00291-018-0520-8.html
   My bibliography  Save this article

Flow shop scheduling with flexible processing times

Author

Listed:
  • Matthias Bultmann

    (University of Osnabrück)

  • Sigrid Knust

    (University of Osnabrück)

  • Stefan Waldherr

    (Technical University of Munich)

Abstract

In numerous flow shop variants, the processing times of the operations are not fixed in advance, but may be distributed with some flexibility among the machines. In this paper, we introduce a general model which is expressive enough to cover several models from the literature. While in most cases it is $$\mathcal {NP}$$ NP -hard to find a job permutation and a corresponding distribution of processing times minimizing the makespan, we show that for a fixed job permutation a best processing time distribution can be calculated in polynomial time by linear programming. Based on this, we propose a tabu search procedure using the set of all job permutations as search space. In a computational study, we show the power of the new model. Besides the classical permutation flow shop environment, we study variants with blocking, no-wait and synchronous movement constraints.

Suggested Citation

  • Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
  • Handle: RePEc:spr:orspec:v:40:y:2018:i:3:d:10.1007_s00291-018-0520-8
    DOI: 10.1007/s00291-018-0520-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-018-0520-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-018-0520-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    2. Nowicki, Eugeniusz & Zdrzalka, Stanislaw, 1988. "A two-machine flow shop scheduling problem with controllable job processing times," European Journal of Operational Research, Elsevier, vol. 34(2), pages 208-220, March.
    3. Jatinder Gupta & Christos Koulamas & George Kyparisis & Chris Potts & Vitaly Strusevich, 2004. "Scheduling Three-Operation Jobs in a Two-Machine Flow Shop to Minimize Makespan," Annals of Operations Research, Springer, vol. 129(1), pages 171-185, July.
    4. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    5. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    6. R L Burdett & E Kozan, 2001. "Sequencing and scheduling in flowshops with task redistribution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(12), pages 1379-1389, December.
    7. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    8. Waldherr, Stefan & Knust, Sigrid, 2015. "Complexity results for flow shop problems with synchronous movement," European Journal of Operational Research, Elsevier, vol. 242(1), pages 34-44.
    9. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
    10. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Knust & N. V. Shakhlevich & S. Waldherr & C. Weiß, 2019. "Shop scheduling problems with pliable jobs," Journal of Scheduling, Springer, vol. 22(6), pages 635-661, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waldherr, Stefan & Knust, Sigrid & Briskorn, Dirk, 2017. "Synchronous flow shop problems: How much can we gain by leaving machines idle?," Omega, Elsevier, vol. 72(C), pages 15-24.
    2. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    3. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    4. Ruiz-Torres, Alex J. & Ho, Johnny C. & Ablanedo-Rosas, José H., 2011. "Makespan and workstation utilization minimization in a flowshop with operations flexibility," Omega, Elsevier, vol. 39(3), pages 273-282, June.
    5. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    6. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    7. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    8. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    9. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    10. Mario Levorato & David Sotelo & Rosa Figueiredo & Yuri Frota, 2024. "Efficient solutions to the m-machine robust flow shop under budgeted uncertainty," Annals of Operations Research, Springer, vol. 338(1), pages 765-799, July.
    11. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
    12. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    13. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    14. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    15. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    16. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    17. Waldherr, Stefan & Knust, Sigrid, 2017. "Decomposition algorithms for synchronous flow shop problems with additional resources and setup times," European Journal of Operational Research, Elsevier, vol. 259(3), pages 847-863.
    18. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
    19. Cheng, Jinliang & Steiner, George & Stephenson, Paul, 2001. "A computational study with a new algorithm for the three-machine permutation flow-shop problem with release times," European Journal of Operational Research, Elsevier, vol. 130(3), pages 559-575, May.
    20. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:40:y:2018:i:3:d:10.1007_s00291-018-0520-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.