IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p363-d1574570.html
   My bibliography  Save this article

Flow Shop Scheduling with Shortening Jobs for Makespan Minimization

Author

Listed:
  • Zheng-Wei Sun

    (School of Computer, Shenyang Aerospace University, Shenyang 110136, China
    These authors contributed equally to this work.)

  • Dan-Yang Lv

    (School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
    Key Laboratory of Rapid Development & Manufacturing Technology for Aircraft, Shenyang Aerospace University, Ministry of Education, Shenyang 110136, China
    These authors contributed equally to this work.)

  • Cai-Min Wei

    (School of Mathematics and Computer, Shantou University, Shantou 515063, China
    These authors contributed equally to this work.)

  • Ji-Bo Wang

    (School of Computer, Shenyang Aerospace University, Shenyang 110136, China
    These authors contributed equally to this work.)

Abstract

This paper deals with a two-machine flow shop problem with shortening jobs. A shortening job means that the job’s processing time is a decreasing function of its starting time. The aim is to find a sequence that minimizes the makespan of all the jobs. several dominance properties, some lower bounds, and an initial upper bound are derived, which are applied to propose a branch-and-bound algorithm to solve the problem. We also propose some heuristics and mathematical programming. Computational experiments are conducted to evaluate the performance of the proposed algorithms.

Suggested Citation

  • Zheng-Wei Sun & Dan-Yang Lv & Cai-Min Wei & Ji-Bo Wang, 2025. "Flow Shop Scheduling with Shortening Jobs for Makespan Minimization," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:363-:d:1574570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A Bachman & T C E Cheng & A Janiak & C T Ng, 2002. "Scheduling start time dependent jobs to minimize the total weighted completion time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(6), pages 688-693, June.
    2. Jin Qian & Yu Zhan, 2022. "The Due Window Assignment Problems with Deteriorating Job and Delivery Time," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    3. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
    4. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Time-Changing Effects and Rate-Modifying Activities," International Series in Operations Research and Management Science, Springer, number 978-3-319-39574-6, April.
    5. Xinyu Sun & Xin-Na Geng, 2019. "Single-machine scheduling with deteriorating effects and machine maintenance," International Journal of Production Research, Taylor & Francis Journals, vol. 57(10), pages 3186-3199, May.
    6. Zheng Liu & Ji-Bo Wang, 2024. "Single-Machine Scheduling with Simultaneous Learning Effects and Delivery Times," Mathematics, MDPI, vol. 12(16), pages 1-20, August.
    7. Jing-jing Wang & Ling Wang, 2019. "Decoding methods for the flow shop scheduling with peak power consumption constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 57(10), pages 3200-3218, May.
    8. A Kononov & S Gawiejnowicz, 2001. "NP-hard cases in scheduling deteriorating jobs on dedicated machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 708-717, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Guo Lv & Li-Han Zhang & Xiao-Yuan Wang & Ji-Bo Wang, 2024. "Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    2. Yurong Zhang & Xi Wang & Li-Han Zhang & Xue Jia & Ji-Bo Wang, 2024. "Different due-window assignment scheduling with deterioration effects," Journal of Combinatorial Optimization, Springer, vol. 48(5), pages 1-21, December.
    3. Wu, Chin-Chia & Lee, Wen-Chiung, 2006. "Two-machine flowshop scheduling to minimize mean flow time under linear deterioration," International Journal of Production Economics, Elsevier, vol. 103(2), pages 572-584, October.
    4. Rong-Rong Mao & Yi-Chun Wang & Dan-Yang Lv & Ji-Bo Wang & Yuan-Yuan Lu, 2023. "Delivery Times Scheduling with Deterioration Effects in Due Window Assignment Environments," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    5. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
    6. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    7. Lu, Shaojun & Hu, Chiwei & Kong, Min & Fathollahi-Fard, Amir M. & Dulebenets, Maxim A., 2024. "Scheduling of memory chips for final testing on parallel machines considering power constraints and deteriorating effects," International Journal of Production Economics, Elsevier, vol. 278(C).
    8. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    9. Li-Han Zhang & Dan-Yang Lv & Ji-Bo Wang, 2023. "Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs," Mathematics, MDPI, vol. 11(12), pages 1-12, June.
    10. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.
    11. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    12. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    13. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    14. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Yuan-Yuan Lu & Na Ren & Ji-Bo Wang, 2023. "Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    15. Zhongyi Jiang & Fangfang Chen & Xiandong Zhang, 2022. "Single-machine scheduling problems with general truncated sum-of-actual-processing-time-based learning effect," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 116-139, January.
    16. J-B Wang & J-J Wang & P Ji, 2011. "Scheduling jobs with chain precedence constraints and deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1765-1770, September.
    17. Alan J. Soper & Vitaly A. Strusevich, 2020. "Refined conditions for V-shaped optimal sequencing on a single machine to minimize total completion time under combined effects," Journal of Scheduling, Springer, vol. 23(6), pages 665-680, December.
    18. Li, Yongqiang & Li, Gang & Sun, Linyan & Xu, Zhiyong, 2009. "Single machine scheduling of deteriorating jobs to minimize total absolute differences in completion times," International Journal of Production Economics, Elsevier, vol. 118(2), pages 424-429, April.
    19. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
    20. Ming-Hui Li & Dan-Yang Lv & Yuan-Yuan Lu & Ji-Bo Wang, 2024. "Scheduling with Group Technology, Resource Allocation, and Learning Effect Simultaneously," Mathematics, MDPI, vol. 12(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:363-:d:1574570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.