IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i2d10.1007_s10951-022-00775-1.html
   My bibliography  Save this article

A two-stage robust approach for minimizing the weighted number of tardy jobs with objective uncertainty

Author

Listed:
  • François Clautiaux

    (Université de Bordeaux,IMB UMR CNRS 5251)

  • Boris Detienne

    (Université de Bordeaux,IMB UMR CNRS 5251)

  • Henri Lefebvre

    (Università di Bologna)

Abstract

Minimizing the weighted number of tardy jobs on one machine is a classical and intensively studied scheduling problem. In this paper, we develop a two-stage robust approach, where exact weights are known after accepting the jobs to be performed, and before sequencing them on the machine. This assumption allows diverse recourse decisions to be taken in order to better adapt one’s mid-term plan. The contribution of this paper is twofold: First, we introduce a new scheduling problem and model it as a min-max-min optimization problem with mixed-integer recourse by extending existing models proposed for the deterministic case. Second, we take advantage of the special structure of the problem to propose two solution approaches based on results from the recent robust optimization literature: namely the finite adaptability (Bertsimas and Caramanis in IEEE Trans Autom Control 55(12):2751–2766, 2010) and a convexification-based approach (Arslan and Detienne in INFORMS J Comput 34(2):857–871, 2022). We also study the additional cost of the solutions if the sequence of jobs has to be determined before the uncertainty is revealed. Computational experiments are reported to analyze the effectiveness of our approaches.

Suggested Citation

  • François Clautiaux & Boris Detienne & Henri Lefebvre, 2023. "A two-stage robust approach for minimizing the weighted number of tardy jobs with objective uncertainty," Journal of Scheduling, Springer, vol. 26(2), pages 169-191, April.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:2:d:10.1007_s10951-022-00775-1
    DOI: 10.1007/s10951-022-00775-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-022-00775-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-022-00775-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Yang & Gang Yu, 2002. "On the Robust Single Machine Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 17-33, March.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.
    4. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    5. Allahverdi, Ali & Mittenthal, John, 1995. "Scheduling on a two-machine flowshop subject to random breakdowns with a makespan objective function," European Journal of Operational Research, Elsevier, vol. 81(2), pages 376-387, March.
    6. Peridy, Laurent & Pinson, Eric & Rivreau, David, 2003. "Using short-term memory to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 148(3), pages 591-603, August.
    7. Shapiro, Alexander, 2012. "Minimax and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 719-726.
    8. Marjan Akker & Han Hoogeveen & Judith Stoef, 2018. "Combining two-stage stochastic programming and recoverable robustness to minimize the number of late jobs in the case of uncertain processing times," Journal of Scheduling, Springer, vol. 21(6), pages 607-617, December.
    9. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
    10. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
    11. Dimitris Bertsimas & Angelos Georghiou, 2015. "Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization," Operations Research, INFORMS, vol. 63(3), pages 610-627, June.
    12. Stéphane Dauzère‐Pérès & Marc Sevaux, 2003. "Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(3), pages 273-288, April.
    13. Josette Ayoub & Michael Poss, 2016. "Decomposition for adjustable robust linear optimization subject to uncertainty polytope," Computational Management Science, Springer, vol. 13(2), pages 219-239, April.
    14. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    15. Grani A. Hanasusanto & Daniel Kuhn & Wolfram Wiesemann, 2015. "K -Adaptability in Two-Stage Robust Binary Programming," Operations Research, INFORMS, vol. 63(4), pages 877-891, August.
    16. Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
    17. Hiroshi Kise & Toshihide Ibaraki & Hisashi Mine, 1978. "A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times," Operations Research, INFORMS, vol. 26(1), pages 121-126, February.
    18. Dimitris Bertsimas & Ebrahim Nasrabadi & Sebastian Stiller, 2013. "Robust and Adaptive Network Flows," Operations Research, INFORMS, vol. 61(5), pages 1218-1242, October.
    19. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Quilliot, Alain, 2017. "Anchored reactive and proactive solutions to the CPM-scheduling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 67-74.
    20. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.
    2. Ayşe N. Arslan & Boris Detienne, 2022. "Decomposition-Based Approaches for a Class of Two-Stage Robust Binary Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 857-871, March.
    3. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    4. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    5. Gio Kao & Edward Sewell & Sheldon Jacobson & Shane Hall, 2012. "New dominance rules and exploration strategies for the 1|r i |∑U i scheduling problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1253-1274, April.
    6. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    7. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    8. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Pass-Lanneau, Adèle, 2021. "Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 22-33.
    9. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    10. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    11. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    12. Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
    13. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
    14. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    15. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    16. Anirudh Subramanyam & Frank Mufalli & José M. Lí?nez-Aguirre & Jose M. Pinto & Chrysanthos E. Gounaris, 2021. "Robust Multiperiod Vehicle Routing Under Customer Order Uncertainty," Operations Research, INFORMS, vol. 69(1), pages 30-60, January.
    17. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    18. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    19. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
    20. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:2:d:10.1007_s10951-022-00775-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.