IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v51y2012i3p1253-1274.html
   My bibliography  Save this article

New dominance rules and exploration strategies for the 1|r i |∑U i scheduling problem

Author

Listed:
  • Gio Kao
  • Edward Sewell
  • Sheldon Jacobson
  • Shane Hall

Abstract

No abstract is available for this item.

Suggested Citation

  • Gio Kao & Edward Sewell & Sheldon Jacobson & Shane Hall, 2012. "New dominance rules and exploration strategies for the 1|r i |∑U i scheduling problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1253-1274, April.
  • Handle: RePEc:spr:coopap:v:51:y:2012:i:3:p:1253-1274
    DOI: 10.1007/s10589-010-9378-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-010-9378-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-010-9378-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas L. Morin & Roy E. Marsten, 1976. "Branch-and-Bound Strategies for Dynamic Programming," Operations Research, INFORMS, vol. 24(4), pages 611-627, August.
    2. Peridy, Laurent & Pinson, Eric & Rivreau, David, 2003. "Using short-term memory to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 148(3), pages 591-603, August.
    3. Christos Koulamas, 1994. "The Total Tardiness Problem: Review and Extensions," Operations Research, INFORMS, vol. 42(6), pages 1025-1041, December.
    4. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    5. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    6. Chris N. Potts & Luk N. Van Wassenhove, 1985. "A Branch and Bound Algorithm for the Total Weighted Tardiness Problem," Operations Research, INFORMS, vol. 33(2), pages 363-377, April.
    7. Hiroshi Kise & Toshihide Ibaraki & Hisashi Mine, 1978. "A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times," Operations Research, INFORMS, vol. 26(1), pages 121-126, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yolmeh, Abdolmajid & Baykal-Gürsoy, Melike, 2021. "Weighted network search games with multiple hidden objects and multiple search teams," European Journal of Operational Research, Elsevier, vol. 289(1), pages 338-349.
    2. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.
    2. François Clautiaux & Boris Detienne & Henri Lefebvre, 2023. "A two-stage robust approach for minimizing the weighted number of tardy jobs with objective uncertainty," Journal of Scheduling, Springer, vol. 26(2), pages 169-191, April.
    3. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    4. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
    5. Bilge, Umit & Kurtulan, Mujde & Kirac, Furkan, 2007. "A tabu search algorithm for the single machine total weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1423-1435, February.
    6. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
    7. Philippe Baptiste & Ruslan Sadykov, 2009. "On scheduling a single machine to minimize a piecewise linear objective function: A compact MIP formulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 487-502, September.
    8. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
    9. Gupta, Jatinder N. D. & Ho, Johnny C., 1996. "Scheduling with two job classes and setup times to minimize the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 42(3), pages 205-216, April.
    10. Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.
    11. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
    12. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    13. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.
    14. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    15. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    16. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    17. Yagiura, Mutsunori & Ibaraki, Toshihide, 1996. "The use of dynamic programming in genetic algorithms for permutation problems," European Journal of Operational Research, Elsevier, vol. 92(2), pages 387-401, July.
    18. Yavuz, Mesut & Tufekci, Suleyman, 2006. "A bounded dynamic programming solution to the batching problem in mixed-model just-in-time manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 841-862, October.
    19. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
    20. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "Order acceptance and scheduling in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 141(1), pages 366-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:51:y:2012:i:3:p:1253-1274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.