IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v13y2016i2d10.1007_s10287-016-0249-2.html
   My bibliography  Save this article

Decomposition for adjustable robust linear optimization subject to uncertainty polytope

Author

Listed:
  • Josette Ayoub

    (CDS Consultant at Murex)

  • Michael Poss

    (Université de Montpellier)

Abstract

We present in this paper a general decomposition framework to solve exactly adjustable robust linear optimization problems subject to polytope uncertainty. Our approach is based on replacing the polytope by the set of its extreme points and generating the extreme points on the fly within row generation or column-and-row generation algorithms. The novelty of our approach lies in formulating the separation problem as a feasibility problem instead of a max–min problem as done in recent works. Applying the Farkas lemma, we can reformulate the separation problem as a bilinear program, which is then linearized to obtained a mixed-integer linear programming formulation. We compare the two algorithms on a robust telecommunications network design under demand uncertainty and budgeted uncertainty polytope. Our results show that the relative performance of the algorithms depend on whether the budget is integer or fractional.

Suggested Citation

  • Josette Ayoub & Michael Poss, 2016. "Decomposition for adjustable robust linear optimization subject to uncertainty polytope," Computational Management Science, Springer, vol. 13(2), pages 219-239, April.
  • Handle: RePEc:spr:comgts:v:13:y:2016:i:2:d:10.1007_s10287-016-0249-2
    DOI: 10.1007/s10287-016-0249-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-016-0249-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-016-0249-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Postek, K.S. & den Hertog, D., 2014. "Multi-stage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty set," Other publications TiSEM 8649012b-1bb0-4d34-83f1-7, Tilburg University, School of Economics and Management.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. C. Audet & P. Hansen & B. Jaumard & G. Savard, 1997. "Links Between Linear Bilevel and Mixed 0–1 Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 273-300, May.
    4. Sara Mattia, 2013. "The robust network loading problem with dynamic routing," Computational Optimization and Applications, Springer, vol. 54(3), pages 619-643, April.
    5. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    6. Xin Chen & Melvyn Sim & Peng Sun & Jiawei Zhang, 2008. "A Linear Decision-Based Approximation Approach to Stochastic Programming," Operations Research, INFORMS, vol. 56(2), pages 344-357, April.
    7. Dimitris Bertsimas & Angelos Georghiou, 2015. "Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization," Operations Research, INFORMS, vol. 63(3), pages 610-627, June.
    8. Dan A. Iancu & Mayank Sharma & Maxim Sviridenko, 2013. "Supermodularity and Affine Policies in Dynamic Robust Optimization," Operations Research, INFORMS, vol. 61(4), pages 941-956, August.
    9. Xin Chen & Yuhan Zhang, 2009. "Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts," Operations Research, INFORMS, vol. 57(6), pages 1469-1482, December.
    10. Postek, K.S. & den Hertog, D., 2014. "Multi-stage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty set," Discussion Paper 2014-056, Tilburg University, Center for Economic Research.
    11. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
    2. Hamaz, Idir & Houssin, Laurent & Cafieri, Sonia, 2024. "The robust cyclic job shop problem," European Journal of Operational Research, Elsevier, vol. 312(3), pages 855-865.
    3. Ayşe N. Arslan & Boris Detienne, 2022. "Decomposition-Based Approaches for a Class of Two-Stage Robust Binary Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 857-871, March.
    4. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    5. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    6. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    7. Marin Bougeret & Jérémy Omer & Michael Poss, 2023. "Optimization Problems in Graphs with Locational Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 578-592, May.
    8. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    9. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    10. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    11. Arkajyoti Roy & Shaunak S. Dabadghao & Ahmadreza Marandi, 2024. "Value of intermediate imaging in adaptive robust radiotherapy planning to manage radioresistance," Annals of Operations Research, Springer, vol. 339(3), pages 1307-1328, August.
    12. Ayşe N. Arslan & Michael Poss & Marco Silva, 2022. "Min-Sup-Min Robust Combinatorial Optimization with Few Recourse Solutions," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2212-2228, July.
    13. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.
    14. Qun Li & Qiang Li & Chenggen Wang, 2023. "Unit Combination Scheduling Method Considering System Frequency Dynamic Constraints under High Wind Power Share," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
    15. Sara Mattia & Michael Poss, 2018. "A comparison of different routing schemes for the robust network loading problem: polyhedral results and computation," Computational Optimization and Applications, Springer, vol. 69(3), pages 753-800, April.
    16. Marcio Costa Santos & Agostinho Agra & Michael Poss, 2020. "Robust inventory theory with perishable products," Annals of Operations Research, Springer, vol. 289(2), pages 473-494, June.
    17. Siqian Shen & Mingdi You & Yintai Ma, 2017. "Single‐commodity stochastic network design under demand and topological uncertainties with insufficient data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 154-173, March.
    18. François Clautiaux & Boris Detienne & Henri Lefebvre, 2023. "A two-stage robust approach for minimizing the weighted number of tardy jobs with objective uncertainty," Journal of Scheduling, Springer, vol. 26(2), pages 169-191, April.
    19. Jianzhe Zhen & Ahmadreza Marandi & Danique de Moor & Dick den Hertog & Lieven Vandenberghe, 2022. "Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2410-2427, September.
    20. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    21. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Pass-Lanneau, Adèle, 2021. "Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 22-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & Angelos Georghiou, 2015. "Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization," Operations Research, INFORMS, vol. 63(3), pages 610-627, June.
    2. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    3. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    4. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    5. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    6. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    7. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    8. Farough Motamed Nasab & Zukui Li, 2023. "Multistage Adaptive Robust Binary Optimization: Uncertainty Set Lifting versus Partitioning through Breakpoints Optimization," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    9. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    10. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    11. Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
    12. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    13. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    14. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    15. Yun Fong Lim & Chen Wang, 2017. "Inventory Management Based on Target-Oriented Robust Optimization," Management Science, INFORMS, vol. 63(12), pages 4409-4427, December.
    16. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    17. Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
    18. Rahal, Said & Papageorgiou, Dimitri J. & Li, Zukui, 2021. "Hybrid strategies using linear and piecewise-linear decision rules for multistage adaptive linear optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1014-1030.
    19. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    20. Ayşe N. Arslan & Boris Detienne, 2022. "Decomposition-Based Approaches for a Class of Two-Stage Robust Binary Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 857-871, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:13:y:2016:i:2:d:10.1007_s10287-016-0249-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.