IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i1p22-33.html
   My bibliography  Save this article

Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem

Author

Listed:
  • Bendotti, Pascale
  • Chrétienne, Philippe
  • Fouilhoux, Pierre
  • Pass-Lanneau, Adèle

Abstract

In project scheduling under processing times uncertainty, the Anchor-Robust Project Scheduling Problem is to find a baseline schedule of bounded makespan and a max-weight subset of jobs whose starting times are guaranteed. The problem was proven NP-hard even for budgeted uncertainty. In the present work we design mixed-integer programming (MIP) formulations that are valid for a variety of uncertainty sets encompassing budgeted uncertainty. A new dominance among solutions is proposed, resulting into an MIP formulation. We further study the combinatorial structure of the problem. Non-trivial polynomial cases under budgeted uncertainty are exhibited, where the dominance-based formulation yields a polyhedral characterization of integer solutions. In more general cases, the dominance-based formulation is shown to be tighter than all previously known formulations. In numerical experiments we investigate how the formulation performs on instances around the polynomial cases, for both budgeted uncertainty sets and more elaborate uncertainty sets involving several budgets.

Suggested Citation

  • Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Pass-Lanneau, Adèle, 2021. "Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 22-33.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:22-33
    DOI: 10.1016/j.ejor.2021.02.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721001478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.02.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Josette Ayoub & Michael Poss, 2016. "Decomposition for adjustable robust linear optimization subject to uncertainty polytope," Computational Management Science, Springer, vol. 13(2), pages 219-239, April.
    3. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    4. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    5. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Quilliot, Alain, 2017. "Anchored reactive and proactive solutions to the CPM-scheduling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 67-74.
    6. Onur Şeref & Ravindra K. Ahuja & James B. Orlin, 2009. "Incremental Network Optimization: Theory and Algorithms," Operations Research, INFORMS, vol. 57(3), pages 586-594, June.
    7. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    8. Herroelen, Willy & Leus, Roel, 2004. "The construction of stable project baseline schedules," European Journal of Operational Research, Elsevier, vol. 156(3), pages 550-565, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    2. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    3. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    4. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    5. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    6. Krumke, Sven O. & Schmidt, Eva & Streicher, Manuel, 2019. "Robust multicovers with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 845-857.
    7. Mohammadi, Reza & He, Qing & Karwan, Mark, 2021. "Data-driven robust strategies for joint optimization of rail renewal and maintenance planning," Omega, Elsevier, vol. 103(C).
    8. Andreas Thorsen & Tao Yao, 2017. "Robust inventory control under demand and lead time uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 207-236, October.
    9. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    10. Curcio, Eduardo & Amorim, Pedro & Zhang, Qi & Almada-Lobo, Bernardo, 2018. "Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty," International Journal of Production Economics, Elsevier, vol. 202(C), pages 81-96.
    11. Denoyel, Victoire & Alfandari, Laurent & Thiele, Aurélie, 2017. "Optimizing healthcare network design under reference pricing and parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 263(3), pages 996-1006.
    12. Pejman Peykani & Jafar Gheidar-Kheljani & Reza Farzipoor Saen & Emran Mohammadi, 2022. "Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data," Operational Research, Springer, vol. 22(5), pages 5529-5567, November.
    13. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    14. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    15. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    16. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    17. Juan Carlos Espinoza Garcia & Laurent Alfandari, 2018. "Robust location of new housing developments using a choice model," Annals of Operations Research, Springer, vol. 271(2), pages 527-550, December.
    18. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    19. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    20. Chassein, André & Goerigk, Marc & Kasperski, Adam & Zieliński, Paweł, 2018. "On recoverable and two-stage robust selection problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 265(2), pages 423-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:22-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.