An adaptive branching rule for the permutation flow-shop problem
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
- Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
- Cheng, Jinliang & Steiner, George & Stephenson, Paul, 2001. "A computational study with a new algorithm for the three-machine permutation flow-shop problem with release times," European Journal of Operational Research, Elsevier, vol. 130(3), pages 559-575, May.
- Kim, Yeong-Dae, 1995. "Minimizing total tardiness in permutation flowshops," European Journal of Operational Research, Elsevier, vol. 85(3), pages 541-555, September.
- Carlier, Jacques & Rebai, Ismail, 1996. "Two branch and bound algorithms for the permutation flow shop problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 238-251, April.
- Ramón Companys, 1999. "Note on an improved branch-and-bound algorithm to solve n/m/P/F max problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 25-31, June.
- S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
- Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
- C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
- Jan Gmys, 2022. "Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2502-2522, September.
- Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
- Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
- J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
- M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
- Rios-Mercado, Roger Z. & Bard, Jonathan F., 1998. "Heuristics for the flow line problem with setup costs," European Journal of Operational Research, Elsevier, vol. 110(1), pages 76-98, October.
- Lei Shang & Christophe Lenté & Mathieu Liedloff & Vincent T’Kindt, 2018. "Exact exponential algorithms for 3-machine flowshop scheduling problems," Journal of Scheduling, Springer, vol. 21(2), pages 227-233, April.
- M Haouari & T Ladhari, 2007. "Minimizing maximum lateness in a flow shop subject to release dates," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 62-72, January.
- Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:5:y:1980:i:1:p:19-25. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.