IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v288y2020i1d10.1007_s10479-020-03527-6.html
   My bibliography  Save this article

Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods

Author

Listed:
  • Sara Ceschia

    (University of Udine)

  • Rosita Guido

    (University of Calabria)

  • Andrea Schaerf

    (University of Udine)

Abstract

This paper proposes a local search method based on a large neighborhood to solve the static version of the problem defined for the Second International Nurse Rostering Competition (INRC-II). The search method, driven by a simulated annealing metaheuristic, uses a combination of neighborhoods that either change the assignments of a nurse or swap the assignments of two compatible nurses, for multiple consecutive days. Computational results on the set of competition instances show that our method has been able to improve on all previous approaches on some datasets, and to get close to the best ones in others. Best solutions, along with the datasets and the validation tool, are made available for future comparison.

Suggested Citation

  • Sara Ceschia & Rosita Guido & Andrea Schaerf, 2020. "Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods," Annals of Operations Research, Springer, vol. 288(1), pages 95-113, May.
  • Handle: RePEc:spr:annopr:v:288:y:2020:i:1:d:10.1007_s10479-020-03527-6
    DOI: 10.1007/s10479-020-03527-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03527-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03527-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    2. Glass, Celia A. & Knight, Roger A., 2010. "The nurse rostering problem: A critical appraisal of the problem structure," European Journal of Operational Research, Elsevier, vol. 202(2), pages 379-389, April.
    3. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    4. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    5. Haroldo G. Santos & Túlio A. M. Toffolo & Rafael A. M. Gomes & Sabir Ribas, 2016. "Integer programming techniques for the nurse rostering problem," Annals of Operations Research, Springer, vol. 239(1), pages 225-251, April.
    6. Federico Della Croce & Fabio Salassa, 2014. "A variable neighborhood search based matheuristic for nurse rostering problems," Annals of Operations Research, Springer, vol. 218(1), pages 185-199, July.
    7. Sara Ceschia & Nguyen Dang & Patrick Causmaecker & Stefaan Haspeslagh & Andrea Schaerf, 2019. "The Second International Nurse Rostering Competition," Annals of Operations Research, Springer, vol. 274(1), pages 171-186, March.
    8. Lü, Zhipeng & Hao, Jin-Kao, 2012. "Adaptive neighborhood search for nurse rostering," European Journal of Operational Research, Elsevier, vol. 218(3), pages 865-876.
    9. Stefaan Haspeslagh & Patrick De Causmaecker & Andrea Schaerf & Martin Stølevik, 2014. "The first international nurse rostering competition 2010," Annals of Operations Research, Springer, vol. 218(1), pages 221-236, July.
    10. Rahimian, Erfan & Akartunalı, Kerem & Levine, John, 2017. "A hybrid Integer Programming and Variable Neighbourhood Search algorithm to solve Nurse Rostering Problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 411-423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turhan, Aykut Melih & Bilgen, Bilge, 2022. "A mat-heuristic based solution approach for an extended nurse rostering problem with skills and units," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Qinyu Zhuo & Weiya Chen & Ziyue Yuan, 2023. "Optimizing Mixed Group Train Operation for Heavy-Haul Railway Transportation: A Case Study in China," Mathematics, MDPI, vol. 11(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elín Björk Böðvarsdóttir & Niels-Christian Fink Bagger & Laura Elise Høffner & Thomas J. R. Stidsen, 2022. "A flexible mixed integer programming-based system for real-world nurse rostering," Journal of Scheduling, Springer, vol. 25(1), pages 59-88, February.
    2. Sara Ceschia & Nguyen Dang & Patrick Causmaecker & Stefaan Haspeslagh & Andrea Schaerf, 2019. "The Second International Nurse Rostering Competition," Annals of Operations Research, Springer, vol. 274(1), pages 171-186, March.
    3. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    4. Toni I. Wickert & Alberto F. Kummer Neto & Márcio M. Boniatti & Luciana S. Buriol, 2021. "An integer programming approach for the physician rostering problem," Annals of Operations Research, Springer, vol. 302(2), pages 363-390, July.
    5. Suk Ho Jin & Ho Yeong Yun & Suk Jae Jeong & Kyung Sup Kim, 2017. "Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems for Solving the Nurse Rostering Problem," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    6. Rahimian, Erfan & Akartunalı, Kerem & Levine, John, 2017. "A hybrid Integer Programming and Variable Neighbourhood Search algorithm to solve Nurse Rostering Problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 411-423.
    7. Turhan, Aykut Melih & Bilgen, Bilge, 2022. "A mat-heuristic based solution approach for an extended nurse rostering problem with skills and units," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Lai, David S.W. & Leung, Janny M.Y. & Dullaert, Wout & Marques, Inês, 2020. "A graph-based formulation for the shift rostering problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 285-300.
    9. Caballini, Claudia & Paolucci, Massimo, 2020. "A rostering approach to minimize health risks for workers: An application to a container terminal in the Italian port of Genoa," Omega, Elsevier, vol. 95(C).
    10. Mohammad Reza Hassani & J. Behnamian, 2021. "A scenario-based robust optimization with a pessimistic approach for nurse rostering problem," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 143-169, January.
    11. Emir Demirović & Nysret Musliu & Felix Winter, 2019. "Modeling and solving staff scheduling with partial weighted maxSAT," Annals of Operations Research, Springer, vol. 275(1), pages 79-99, April.
    12. Wolbeck, Lena Antonia, 2019. "Fairness aspects in personnel scheduling," Discussion Papers 2019/16, Free University Berlin, School of Business & Economics.
    13. Sophie Veldhoven & Gerhard Post & Egbert Veen & Tim Curtois, 2016. "An assessment of a days off decomposition approach to personnel shift scheduling," Annals of Operations Research, Springer, vol. 239(1), pages 207-223, April.
    14. Doi, Tsubasa & Nishi, Tatsushi & Voß, Stefan, 2018. "Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time," European Journal of Operational Research, Elsevier, vol. 267(2), pages 428-438.
    15. Xiang Li & Haoyue Fan & Jiaming Liu & Qifeng Xun, 2022. "Staff scheduling in blood collection problems," Annals of Operations Research, Springer, vol. 316(1), pages 365-400, September.
    16. Jalel Euchi & Malek Masmoudi & Patrick Siarry, 2022. "Home health care routing and scheduling problems: a literature review," 4OR, Springer, vol. 20(3), pages 351-389, September.
    17. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    18. Belinda Spratt & Erhan Kozan, 2021. "An integrated rolling horizon approach to increase operating theatre efficiency," Journal of Scheduling, Springer, vol. 24(1), pages 3-25, February.
    19. Tom Rihm & Philipp Baumann, 2018. "Staff assignment with lexicographically ordered acceptance levels," Journal of Scheduling, Springer, vol. 21(2), pages 167-189, April.
    20. Reshma Chirayil Chandrasekharan & Pieter Smet & Tony Wauters, 2021. "An automatic constructive matheuristic for the shift minimization personnel task scheduling problem," Journal of Heuristics, Springer, vol. 27(1), pages 205-227, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:288:y:2020:i:1:d:10.1007_s10479-020-03527-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.