IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v39y2009i1p6-17.html
   My bibliography  Save this article

The New Dutch Timetable: The OR Revolution

Author

Listed:
  • Leo Kroon

    (Department of Logistics, Netherlands Railways (NS), NL-3500 HA Utrecht, and Rotterdam School of Management, Erasmus University Rotterdam, NL-3000 DR Rotterdam, The Netherlands)

  • Dennis Huisman

    (Department of Logistics, Netherlands Railways (NS), NL-3500 HA Utrecht, and Econometric Institute, Erasmus University Rotterdam, NL-3000 DR Rotterdam, The Netherlands)

  • Erwin Abbink

    (Department of Logistics, Netherlands Railways (NS), NL-3500 HA Utrecht, The Netherlands)

  • Pieter-Jan Fioole

    (Department of Logistics, Netherlands Railways (NS), NL-3500 HA Utrecht, The Netherlands)

  • Matteo Fischetti

    (Department of Information Engineering, University of Padova, and Double-Click sas, I-35131 Padova, Italy)

  • Gábor Maróti

    (Rotterdam School of Management, Erasmus University Rotterdam, NL-3000 DR Rotterdam, The Netherlands)

  • Alexander Schrijver

    (Center for Mathematics and Computer Science (CWI), Amsterdam, and University of Amsterdam, NL-1098 SJ Amsterdam, The Netherlands)

  • Adri Steenbeek

    (Safiro Software Solutions, NL-1303 AJ Almere, The Netherlands)

  • Roelof Ybema

    (Department of Logistics, Netherlands Railways (NS), NL-3500 HA Utrecht, The Netherlands)

Abstract

In December 2006, Netherlands Railways introduced a completely new timetable. Its objective was to facilitate the growth of passenger and freight transport on a highly utilized railway network and improve the robustness of the timetable, thus resulting in fewer operational train delays. Modifications to the existing timetable, which was constructed in 1970, were not an option; additional growth would require significant investments in the rail infrastructure. Constructing a railway timetable from scratch for about 5,500 daily trains was a complex problem. To support this process, we generated several timetables using sophisticated operations research techniques. Furthermore, because rolling-stock and crew costs are principal components of the costs of a passenger railway operator, we used innovative operations research tools to devise efficient schedules for these two resources. The new resource schedules and the increased number of passengers resulted in an additional annual profit of €40 million ($60 million); the additional revenues generated approximately €10 million of this profit. We expect this profit to increase to €70 million ($105 million) annually in the coming years. However, the benefits of the new timetable for the Dutch society as a whole are much greater: more trains are transporting more passengers on the same railway infrastructure, and these trains are arriving and departing on schedule more than they ever have in the past. In addition, the rail transport system will be able to handle future transportation demand growth and thus allow cities to remain accessible to more people. Therefore, we expect that many will switch from car transport to rail transport, thus reducing the emission of greenhouse gases.

Suggested Citation

  • Leo Kroon & Dennis Huisman & Erwin Abbink & Pieter-Jan Fioole & Matteo Fischetti & Gábor Maróti & Alexander Schrijver & Adri Steenbeek & Roelof Ybema, 2009. "The New Dutch Timetable: The OR Revolution," Interfaces, INFORMS, vol. 39(1), pages 6-17, February.
  • Handle: RePEc:inm:orinte:v:39:y:2009:i:1:p:6-17
    DOI: 10.1287/inte.1080.0409
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1080.0409
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1080.0409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jurjen S. Hooghiemstra & Leo G. Kroon & Michiel A. Odijk & Marc Salomon & Peter J. Zwaneveld, 1999. "Decision Support Systems Support the Search for Win-Win Solutions in Railway Network Design," Interfaces, INFORMS, vol. 29(2), pages 15-32, April.
    2. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    3. Zwaneveld, Peter J. & Kroon, Leo G. & van Hoesel, Stan P. M., 2001. "Routing trains through a railway station based on a node packing model," European Journal of Operational Research, Elsevier, vol. 128(1), pages 14-33, January.
    4. Abbink, E.J.W., 2008. "Solving large scale crew scheduling problems by using iterative partitioning," Econometric Institute Research Papers EI 2008-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    6. Abbink, E.J.W. & Albino, L. & Dollevoet, T.A.B. & Huisman, D. & Roussado, J. & Saldanha, R.L., 2010. "Solving Large Scale Crew Scheduling Problems in Practice," Econometric Institute Research Papers EI 2010-63, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Erwin Abbink & Matteo Fischetti & Leo Kroon & Gerrit Timmer & Michiel Vromans, 2005. "Reinventing Crew Scheduling at Netherlands Railways," Interfaces, INFORMS, vol. 35(5), pages 393-401, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kroon, L.G. & Huisman, D. & Abbink, E.J.W. & Fioole, P-J. & Fischetti, M. & Maróti, G. & Schrijver, A. & Steenbeek, A. & Ybema, R., 2008. "The new Dutch timetable: The OR revolution," Econometric Institute Research Papers EI 2008-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Kroon, L.G. & Huisman, D. & Maróti, G., 2007. "Railway timetabling from an operations research," Econometric Institute Research Papers EI 2007-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    4. Abbink, E.J.W. & Albino, L. & Dollevoet, T.A.B. & Huisman, D. & Roussado, J. & Saldanha, R.L., 2010. "Solving Large Scale Crew Scheduling Problems in Practice," Econometric Institute Research Papers EI 2010-63, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    6. Dauzère-Pérès, Stéphane & De Almeida, David & Guyon, Olivier & Benhizia, Faten, 2015. "A Lagrangian heuristic framework for a real-life integrated planning problem of railway transportation resources," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 138-150.
    7. Cacchiani, V. & Huisman, D. & Kidd, M.P. & Kroon, L.G. & Toth, P. & Veelenturf, L.P. & Wagenaar, J.C., 2013. "An Overview of Recovery Models for Real-time Railway Rescheduling," Econometric Institute Research Papers 50112, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Jespersen-Groth, J. & Potthoff, D. & Clausen, J. & Huisman, D. & Kroon, L.G. & Maróti, G. & Nielsen, M.N., 2007. "Disruption management in passenger railway transportation," Econometric Institute Research Papers EI 2007-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    10. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    11. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    12. Kroon, L.G. & Huisman, D., 2011. "Algorithmic Support for Disruption Management at Netherlands Railways," Econometric Institute Research Papers EI 2011-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Abbink, E.J.W., 2008. "Solving large scale crew scheduling problems by using iterative partitioning," Econometric Institute Research Papers EI 2008-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Budai-Balke, G. & Maróti, G. & Dekker, R. & Huisman, D. & Kroon, L.G., 2007. "Re-scheduling in railways: the rolling stock balancing problem," Econometric Institute Research Papers EI 2007-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Breugem, T. & Dollevoet, T.A.B. & Huisman, D., 2017. "Is Equality always desirable?," Econometric Institute Research Papers EI2017-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Leo G. Kroon & Leon W. P. Peeters, 2003. "A Variable Trip Time Model for Cyclic Railway Timetabling," Transportation Science, INFORMS, vol. 37(2), pages 198-212, May.
    17. Dennis Huisman & Gábor Maróti, 2024. "Operations Research at Netherlands Railways," SN Operations Research Forum, Springer, vol. 5(3), pages 1-6, September.
    18. Piotr Gołębiowski & Marianna Jacyna & Andrzej Stańczak, 2021. "The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland," Energies, MDPI, vol. 14(18), pages 1-18, September.
    19. Bach, L. & Dollevoet, T.A.B. & Huisman, D., 2014. "Integrating Timetabling and Crew," Econometric Institute Research Papers EI 2014-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Lukas Bach & Twan Dollevoet & Dennis Huisman, 2016. "Integrating Timetabling and Crew Scheduling at a Freight Railway Operator," Transportation Science, INFORMS, vol. 50(3), pages 878-891, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:39:y:2009:i:1:p:6-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.