IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i3p887-898.html
   My bibliography  Save this article

Coordinating scheduling and rejection decisions in a two-machine flow shop scheduling problem

Author

Listed:
  • Shabtay, Dvir
  • Gerstl, Enrique

Abstract

We study a two-machine flow shop scheduling problem where any operation can be rejected at a certain cost. A solution for such a problem requires two sets of decisions. The first involves the partition of the set of operations into two subsets: the set of operations that are accepted for scheduling in the shop, and the set of rejected operations. The second decision involves scheduling the set of accepted operations in the shop. The objective is to find a solution that minimizes the sum of the makespan and the total rejection cost. We prove that the problem is NP-hard even if all processing operations have identical processing times and identical rejection costs on either one of the two machines. We show, however, that the problem is fixed parameterized tractable with respect to a parameter that combine the number of different processing times on both machines with the number of different rejection costs on one out of the two machines. We also provide a pseudo-polynomial time algorithm for the problem, which we then convert into a fully polynomial time approximation scheme. This is achieved by dividing the problem into a set of subproblems and deriving a fully polynomial time approximation scheme for each one of them, separately. Finally, we present an integer linear programming formulation of the problem and two simple 2-approximation algorithms.

Suggested Citation

  • Shabtay, Dvir & Gerstl, Enrique, 2024. "Coordinating scheduling and rejection decisions in a two-machine flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 887-898.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:887-898
    DOI: 10.1016/j.ejor.2024.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724002212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dvir Shabtay & Daniel Oron, 2016. "Proportionate flow-shop scheduling with rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(5), pages 752-769, May.
    2. Liqi Zhang & Lingfa Lu & Shisheng Li, 2016. "New results on two-machine flow-shop scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1493-1504, May.
    3. Lee, Kangbok & Choi, Byung-Cheon, 2011. "Two-stage production scheduling with an outsourcing option," European Journal of Operational Research, Elsevier, vol. 213(3), pages 489-497, September.
    4. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    5. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    6. Danny Hermelin & Dvir Shabtay & Chen Zelig & Michael Pinedo, 2022. "A general scheme for solving a large set of scheduling problems with rejection in FPT time," Journal of Scheduling, Springer, vol. 25(2), pages 229-255, April.
    7. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    8. Qiang Gao & Xiwen Lu, 2014. "Two-Machine Flow Shop Scheduling With Individual Operation'S Rejection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-13.
    9. Choi, Byung-Cheon & Chung, Jibok, 2011. "Two-machine flow shop scheduling problem with an outsourcing option," European Journal of Operational Research, Elsevier, vol. 213(1), pages 66-72, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danny Hermelin & Dvir Shabtay & Chen Zelig & Michael Pinedo, 2022. "A general scheme for solving a large set of scheduling problems with rejection in FPT time," Journal of Scheduling, Springer, vol. 25(2), pages 229-255, April.
    2. Liqi Zhang & Lingfa Lu & Shisheng Li, 2016. "New results on two-machine flow-shop scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1493-1504, May.
    3. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    4. Della Croce, Federico & Koulamas, Christos & T'kindt, Vincent, 2017. "A constraint generation approach for two-machine shop problems with jobs selection," European Journal of Operational Research, Elsevier, vol. 259(3), pages 898-905.
    5. Byung-Cheon Choi & Joseph Y.-T. Leung & Michael L. Pinedo, 2011. "Minimizing makespan in an ordered flow shop with machine-dependent processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 797-818, November.
    6. Thierry Garaix & Salim Rostami & Xiaolan Xie, 2020. "Daily outpatient chemotherapy appointment scheduling with random deferrals," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 129-153, March.
    7. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    8. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.
    9. Shi-Sheng Li & De-Liang Qian & Ren-Xia Chen, 2017. "Proportionate Flow Shop Scheduling with Rejection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-13, August.
    10. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.
    11. J.-C. Billaut & F. Della Croce & F. Salassa & V. T’kindt, 2019. "No-idle, no-wait: when shop scheduling meets dominoes, Eulerian paths and Hamiltonian paths," Journal of Scheduling, Springer, vol. 22(1), pages 59-68, February.
    12. Zongxu Mu & Minming Li, 2015. "DVS scheduling in a line or a star network of processors," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 16-35, January.
    13. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    14. Jan Gmys, 2022. "Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2502-2522, September.
    15. Chung, Dae-Young & Choi, Byung-Cheon, 2013. "Outsourcing and scheduling for two-machine ordered flow shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 226(1), pages 46-52.
    16. Yen-Shing Tsai & Bertrand Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    17. A.A. Gladky & Y.M. Shafransky & V.A. Strusevich, 2004. "Flow Shop Scheduling Problems Under Machine–Dependent Precedence Constraints," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 13-28, March.
    18. Yong Chen & Yinhui Cai & Longcheng Liu & Guangting Chen & Randy Goebel & Guohui Lin & Bing Su & An Zhang, 2022. "Path cover with minimum nontrivial paths and its application in two-machine flow-shop scheduling with a conflict graph," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 571-588, April.
    19. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    20. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:3:p:887-898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.