IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v21y2018i1d10.1007_s10951-017-0523-3.html
   My bibliography  Save this article

Task assignment with start time-dependent processing times for personnel at check-in counters

Author

Listed:
  • Emilio Zamorano

    (University of Mannheim)

  • Annika Becker

    (University of Mannheim)

  • Raik Stolletz

    (University of Mannheim)

Abstract

This paper addresses a task assignment problem encountered by check-in counter personnel at airports. The problem consists of assigning multiskilled agents to a sequence of tasks in check-in counters. Because each task’s ending time is fixed to comply with the flight schedule, its processing time depends on the arrival of the assigned agents. We propose a mixed-integer program and a branch-and-price algorithm to solve this problem. We exploit the problem structure to efficiently formulate the pricing problems and improve computation time. Using real-world data from a German ground-handling agency, we conduct numerical studies to evaluate the performance of the proposed solutions.

Suggested Citation

  • Emilio Zamorano & Annika Becker & Raik Stolletz, 2018. "Task assignment with start time-dependent processing times for personnel at check-in counters," Journal of Scheduling, Springer, vol. 21(1), pages 93-109, February.
  • Handle: RePEc:spr:jsched:v:21:y:2018:i:1:d:10.1007_s10951-017-0523-3
    DOI: 10.1007/s10951-017-0523-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0523-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0523-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    2. Corominas, Albert & Pastor, Rafael & Rodriguez, Ericka, 2006. "Rotational allocation of tasks to multifunctional workers in a service industry," International Journal of Production Economics, Elsevier, vol. 103(1), pages 3-9, September.
    3. Zamorano, Emilio & Stolletz, Raik, 2017. "Branch-and-price approaches for the Multiperiod Technician Routing and Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 55-68.
    4. Krishnamoorthy, M. & Ernst, A.T. & Baatar, D., 2012. "Algorithms for large scale Shift Minimisation Personnel Task Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 34-48.
    5. Corominas, Albert & Olivella, Jordi & Pastor, Rafael, 2010. "A model for the assignment of a set of tasks when work performance depends on experience of all tasks involved," International Journal of Production Economics, Elsevier, vol. 126(2), pages 335-340, August.
    6. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    7. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    8. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    9. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    10. Campbell, Gerard M. & Diaby, Moustapha, 2002. "Development and evaluation of an assignment heuristic for allocating cross-trained workers," European Journal of Operational Research, Elsevier, vol. 138(1), pages 9-20, April.
    11. Bode, Claudia & Irnich, Stefan, 2014. "The shortest-path problem with resource constraints with (k,2)-loop elimination and its application to the capacitated arc-routing problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 415-426.
    12. Eveborn, Patrik & Flisberg, Patrik & Ronnqvist, Mikael, 2006. "Laps Care--an operational system for staff planning of home care," European Journal of Operational Research, Elsevier, vol. 171(3), pages 962-976, June.
    13. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    14. Marius M. Solomon & Jacques Desrosiers, 1988. "Survey Paper---Time Window Constrained Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 22(1), pages 1-13, February.
    15. Gerard M. Campbell, 1999. "Cross-Utilization of Workers Whose Capabilities Differ," Management Science, INFORMS, vol. 45(5), pages 722-732, May.
    16. Stolletz, Raik, 2010. "Operational workforce planning for check-in counters at airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 414-425, May.
    17. Moshe Dror, 1994. "Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW," Operations Research, INFORMS, vol. 42(5), pages 977-978, October.
    18. Liang, Timothy T. & Buclatin, Ben B., 1988. "Improving the utilization of training resources through optimal personnel assignment in the U.S. Navy," European Journal of Operational Research, Elsevier, vol. 33(2), pages 183-190, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    2. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    3. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    4. Qie He & Stefan Irnich & Yongjia Song, 2019. "Branch-and-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Transportation Science, INFORMS, vol. 53(5), pages 1409-1426, September.
    5. Diego Pecin & Claudio Contardo & Guy Desaulniers & Eduardo Uchoa, 2017. "New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 489-502, August.
    6. Ricardo Fukasawa & Qie He & Fernando Santos & Yongjia Song, 2018. "A Joint Vehicle Routing and Speed Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 694-709, November.
    7. Stefan Irnich & Guy Desaulniers & Jacques Desrosiers & Ahmed Hadjar, 2010. "Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 297-313, May.
    8. Gschwind, Timo, 2015. "A comparison of column-generation approaches to the Synchronized Pickup and Delivery Problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 60-71.
    9. Zamorano, Emilio & Stolletz, Raik, 2017. "Branch-and-price approaches for the Multiperiod Technician Routing and Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 55-68.
    10. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    11. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    12. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    14. Iman Dayarian & Guy Desaulniers, 2019. "A Branch-Price-and-Cut Algorithm for a Production-Routing Problem with Short-Life-Span Products," Transportation Science, INFORMS, vol. 53(3), pages 829-849, May.
    15. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    16. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    17. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    18. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    19. Asvin Goel & Stefan Irnich, 2017. "An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems," Transportation Science, INFORMS, vol. 51(2), pages 737-754, May.
    20. Timo Gschwind & Stefan Irnich, 2015. "Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 49(2), pages 335-354, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:21:y:2018:i:1:d:10.1007_s10951-017-0523-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.