IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v198y2009i2p370-377.html
   My bibliography  Save this article

Up- and downgrading the 1-center in a network

Author

Listed:
  • Gassner, Elisabeth

Abstract

We study budget constrained network improvement and degrading problems based on the vertex 1-center problem on graphs: given a graph with vertex weights and edge lengths the task is to decrease and increase the vertex weights within certain limits such that the optimal 1-center objective value with respect to the new weights is minimized and maximized, respectively. The upgrading (improvement) problem is shown to be solvable in time provided that the distance matrix is given. The downgrading 1-center problem is shown to be strongly -hard on general graphs but can be solved in time on trees. As byproduct we suggest an algorithm that solves the problem of minimizing over the upper envelope of n piecewise linear functions in time where K is the total number of breakpoints.

Suggested Citation

  • Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
  • Handle: RePEc:eee:ejores:v:198:y:2009:i:2:p:370-377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00763-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sven O. Krumke & Madhav V. Marathe & Hartmut Noltemeier & R. Ravi & S. S. Ravi, 1998. "Approximation Algorithms for Certain Network Improvement Problems," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 257-288, September.
    2. Zhang, J. Z. & Yang, X. G. & Cai, M. C., 2004. "Inapproximability and a polynomially solvable special case of a network improvement problem," European Journal of Operational Research, Elsevier, vol. 155(1), pages 251-257, May.
    3. Burkard, Rainer E. & Lin, Yixun & Zhang, Jianzhong, 2004. "Weight reduction problems with certain bottleneck objectives," European Journal of Operational Research, Elsevier, vol. 153(1), pages 191-199, February.
    4. Elisabeth Gassner, 2008. "The inverse 1-maxian problem with edge length modification," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 50-67, July.
    5. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kien Trung Nguyen & Ali Reza Sepasian, 2016. "The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 872-884, October.
    2. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    3. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    4. Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
    5. Zhi-Ming Chen & Cheng-Hsiung Lee & Hung-Lin Lai, 2022. "Speedup the optimization of maximal closure of a node-weighted directed acyclic graph," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1413-1437, December.
    6. Elisabeth Gassner, 2009. "A game-theoretic approach for downgrading the 1-median in the plane with Manhattan metric," Annals of Operations Research, Springer, vol. 172(1), pages 393-404, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
    2. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    3. Elisabeth Gassner, 2008. "The inverse 1-maxian problem with edge length modification," Journal of Combinatorial Optimization, Springer, vol. 16(1), pages 50-67, July.
    4. Jia Wu & Yi Zhang & Liwei Zhang & Yue Lu, 2016. "A Sequential Convex Program Approach to an Inverse Linear Semidefinite Programming Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-26, August.
    5. Elisabeth Gassner, 2009. "A game-theoretic approach for downgrading the 1-median in the plane with Manhattan metric," Annals of Operations Research, Springer, vol. 172(1), pages 393-404, November.
    6. Elisabeth Gassner, 2012. "An inverse approach to convex ordered median problems in trees," Journal of Combinatorial Optimization, Springer, vol. 23(2), pages 261-273, February.
    7. Guan, Xiucui & Zhang, Jianzhong, 2006. "A class of node based bottleneck improvement problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1540-1552, November.
    8. Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
    9. Fahimeh Baroughi Bonab & Rainer Burkard & Elisabeth Gassner, 2011. "Inverse p-median problems with variable edge lengths," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 263-280, April.
    10. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    11. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    12. Behrooz Alizadeh & Somayeh Bakhteh, 2017. "A modified firefly algorithm for general inverse p-median location problems under different distance norms," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 618-636, September.
    13. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    14. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    15. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    16. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    17. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    18. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    19. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.
    20. T. R. Wang & N. Pedroni & E. Zio & V. Mousseau, 2020. "Identification of Protective Actions to Reduce the Vulnerability of Safety‐Critical Systems to Malevolent Intentional Acts: An Optimization‐Based Decision‐Making Approach," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 565-587, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:198:y:2009:i:2:p:370-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.