IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v13y2011i4d10.1007_s11009-010-9182-y.html
   My bibliography  Save this article

Adjustment Coefficient for Risk Processes in Some Dependent Contexts

Author

Listed:
  • Hélène Cossette

    (Université Laval)

  • Etienne Marceau

    (Université Laval)

  • Véronique Maume-Deschamps

    (Université de Lyon, Université Lyon 1, ISFA)

Abstract

Following Müller and Pflug (Insur Math Econ 28:381–392, 2001) and Nyrhinen (Adv Appl Probab 30:1008–1026, 1998; J Appl Probab 36:733–746, 1999), we study the adjustment coefficient of ruin theory in a context of temporal dependency. We provide a consistent estimator for this coefficient, and perform some simulations.

Suggested Citation

  • Hélène Cossette & Etienne Marceau & Véronique Maume-Deschamps, 2011. "Adjustment Coefficient for Risk Processes in Some Dependent Contexts," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 695-721, December.
  • Handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9182-y
    DOI: 10.1007/s11009-010-9182-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-010-9182-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-010-9182-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muller, Alfred & Pflug, Georg, 2001. "Asymptotic ruin probabilities for risk processes with dependent increments," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 381-392, June.
    2. Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Compound binomial risk model in a markovian environment," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 425-443, October.
    3. Gerber, Hans U., 1982. "Ruin theory in the linear model," Insurance: Mathematics and Economics, Elsevier, vol. 1(3), pages 213-217, July.
    4. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    5. Cossette, Hélène & Marceau, Etienne & Maume-Deschamps, Véronique, 2010. "Discrete-Time Risk Models Based on Time Series for Count Random Variables," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 123-150, May.
    6. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    7. Christ, Ralf & Steinebach, Josef, 1995. "Estimating the adjustment coefficient in an ARMA(p, q) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 149-161, October.
    8. Mammitzsch, V., 1986. "A note on the adjustment coefficient in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 5(2), pages 147-149, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manel Kacem & Stéphane Loisel & Véronique Maume-Deschamps, 2016. "Some mixing properties of conditionally independent processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1241-1259, March.
    2. P. Chigansky & Yu. Kutoyants, 2013. "Estimation in threshold autoregressive models with correlated innovations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 959-992, October.
    3. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    4. Paul Doukhan & Gilles Teyssière & Pablo Winant, 2005. "A Larch Vector Valued Process," Working Papers 2005-49, Center for Research in Economics and Statistics.
    5. Paul Doukhan & Olivier Wintenberger, 2005. "An Invariance Principle for New Weakly Dependent Stationary Models using Sharp Moment Assumptions," Working Papers 2005-51, Center for Research in Economics and Statistics.
    6. Barbe, Ph. & McCormick, W.P., 2010. "An extension of a logarithmic form of Cramér's ruin theorem to some FARIMA and related processes," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 801-828, June.
    7. Doukhan, Paul & Fokianos, Konstantinos & Li, Xiaoyin, 2012. "On weak dependence conditions: The case of discrete valued processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1941-1948.
    8. Christ, Ralf & Steinebach, Josef, 1995. "Estimating the adjustment coefficient in an ARMA(p, q) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 149-161, October.
    9. Jean-Marc Bardet & Paul Doukhan & José Rafael Leon_, 2005. "Uniform Limit Theorems for the Integrated Periodogram of Weakly Dependent Time Series and their Applications to Whittle's Estimate," Working Papers 2005-46, Center for Research in Economics and Statistics.
    10. Giuliano-Antonini, R. & Weber, M., 2008. "The theta-dependence coefficient and an Almost Sure Limit Theorem for random iterative models," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 564-575, April.
    11. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    12. Sancetta, Alessio, 2005. "Distance between nonidentically weakly dependent random vectors and Gaussian random vectors under the bounded Lipschitz metric," Statistics & Probability Letters, Elsevier, vol. 75(3), pages 158-168, December.
    13. Rootzén, Holger, 2009. "Weak convergence of the tail empirical process for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 468-490, February.
    14. Doukhan, Paul & Wintenberger, Olivier, 2008. "Weakly dependent chains with infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1997-2013, November.
    15. Paul Doukhan & Hélène Madre & Mathieu Rosenbaum, 2005. "Weak Dependence Beyond Mixing for Infinite ARCH-type Bilinear Models," Working Papers 2005-50, Center for Research in Economics and Statistics.
    16. Jean‐Marc Bardet & Paul Doukhan & José Rafael León, 2008. "Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 906-945, September.
    17. Doukhan, Paul & Neumann, Michael H., 2007. "Probability and moment inequalities for sums of weakly dependent random variables, with applications," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 878-903, July.
    18. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    20. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9182-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.