IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i1p123-129.html
   My bibliography  Save this article

A law of large numbers result for a bifurcating process with an infinite moving average representation

Author

Listed:
  • Terpstra, Jeff T.
  • Elbayoumi, Tamer

Abstract

This paper derives a law of large numbers theorem for bifurcating processes defined on a perfect binary tree. This theorem can be viewed as a generalization of some results that have already appeared in the literature. For instance, all that is required of the bifurcating process is an infinite moving average representation with geometrically decaying coefficients and a finite moment assumption. In addition, the summands are assumed to belong to a flexible class of functions that satisfy a generalized Lipschitz type condition. These two criteria allow for an expansive range of applicability. Two examples are given as corollaries to the theorem.

Suggested Citation

  • Terpstra, Jeff T. & Elbayoumi, Tamer, 2012. "A law of large numbers result for a bifurcating process with an infinite moving average representation," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 123-129.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:123-129
    DOI: 10.1016/j.spl.2011.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huggins, Richard, 1996. "On the identifiability of measurement error in the bifurcating autoregressive model," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 17-23, March.
    2. J. Zhou & I. V. Basawa, 2005. "Maximum Likelihood Estimation for a First‐Order Bifurcating Autoregressive Process with Exponential Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 825-842, November.
    3. Zhou, J. & Basawa, I.V., 2005. "Least-squares estimation for bifurcating autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 77-88, August.
    4. Hwang, S.Y. & Basawa, I.V., 2009. "Branching Markov processes and related asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1155-1167, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chenhua, 2011. "Parameter estimation for first-order bifurcating autoregressive processes with Weibull innovations," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1961-1969.
    2. Hwang, S.Y. & Basawa, I.V., 2009. "Branching Markov processes and related asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1155-1167, July.
    3. Mao, Mingzhi, 2014. "The asymptotic behaviors for least square estimation of multi-casting autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 110-124.
    4. Bernard Bercu & Vassili Blandin, 2015. "Limit theorems for bifurcating integer-valued autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 33-67, April.
    5. Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
    6. Hwang, S.Y. & Choi, M.S., 2009. "Modeling and large sample estimation for multi-casting autoregression," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1943-1950, September.
    7. Hwang, S.Y. & Basawa, I.V., 2011. "Asymptotic optimal inference for multivariate branching-Markov processes via martingale estimating functions and mixed normality," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1018-1031, July.
    8. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    9. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2012. "Asymmetry tests for bifurcating auto-regressive processes with missing data," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1439-1444.
    10. Vincent Bansaye & S. Valère Bitseki Penda, 2021. "A Phase Transition for Large Values of Bifurcating Autoregressive Models," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2081-2116, December.
    11. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    12. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    13. Hwang, S.Y. & Baek, J.S., 2010. "Limiting mixture distributions for AR(1) model indexed by a branching process," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 2003-2008, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:123-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.