Selected Topics in the Generalized Mixed Set-Indexed Fractional Brownian Motion
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-021-01077-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
- Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
- Mounir Zili, 2006. "On the mixed fractional Brownian motion," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-9, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
- Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, March.
- Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
- Turvey, Calum G. & Power, Gabriel J., 2006. "The Confidence Limits of a Geometric Brownian Motion," 2006 Annual meeting, July 23-26, Long Beach, CA 21239, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
- Hideharu Funahashi & Masaaki Kijima, 2017. "Does the Hurst index matter for option prices under fractional volatility?," Annals of Finance, Springer, vol. 13(1), pages 55-74, February.
- Rodríguez-Aguilar, Román & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2014. "A Measure of Early Warning of Exchange-Rate Crises Based on the Hurst Coefficient and the Αlpha-Stable Parameter," MPRA Paper 59046, University Library of Munich, Germany.
- Goliński, Adam & Zaffaroni, Paolo, 2016. "Long memory affine term structure models," Journal of Econometrics, Elsevier, vol. 191(1), pages 33-56.
- Adam Golinski & Peter Spencer, 2012. "The Meiselman forward interest rate revision regression as an Affine Term Structure Model," Discussion Papers 12/27, Department of Economics, University of York.
- Eric Djeutcha & Jules Sadefo-Kamdem & Louis Aimé Fono, 2021. "Mixed Modified Fractional Merton model of the bear spread Basket put option using the multidimensional Mellin transform," Working Papers hal-03330043, HAL.
- Turvey, Calum G., 2007. "A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 155-165.
- Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
- Vanessa Didelez, 2008. "Graphical models for marked point processes based on local independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 245-264, February.
- Loch-Olszewska, Hanna, 2019. "Properties and distribution of the dynamical functional for the fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 252-271.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009.
"Realized Volatility Risk,"
CARF F-Series
CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," Working Papers in Economics 10/26, University of Canterbury, Department of Economics and Finance.
- David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," KIER Working Papers 753, Kyoto University, Institute of Economic Research.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized volatility risk," Documentos de Trabajo del ICAE 2013-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
- David E. Allen & Michael McAleer & Marcel Scharth, 2013. "Realized Volatility Risk," Tinbergen Institute Discussion Papers 13-092/III, Tinbergen Institute.
- Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
- Comte, F., 1998. "Discrete and continuous time cointegration," Journal of Econometrics, Elsevier, vol. 88(2), pages 207-226, November.
- Kanaya, Shin & Kristensen, Dennis, 2016.
"Estimation Of Stochastic Volatility Models By Nonparametric Filtering,"
Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
- Shin Kanaya & Dennis Kristensen, 2010. "Estimation of Stochastic Volatility Models by Nonparametric Filtering," CREATES Research Papers 2010-67, Department of Economics and Business Economics, Aarhus University.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers 09/15, Institute for Fiscal Studies.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers CWP09/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
Keywords
Fractional Brownian motion; Set-indexed; Stationary increment; Self-similarity; Continuity; Differentiability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:34:y:2021:i:3:d:10.1007_s10959-021-01077-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.