IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v377y2007i1p155-165.html
   My bibliography  Save this article

A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices

Author

Listed:
  • Turvey, Calum G.

Abstract

The measure of long-term memory is important for the study of economic and financial time series. This paper estimates the Hurst exponent from a Scaled Variance Ratio model for 17 commodity price series under the efficient market null H0:H=0.5. The distribution about the estimates of H are obtained from 90%, 95% and 99% confidence intervals generated from 20,000 Monte Carlo replications of a geometric Brownian motion. The results show that the scaled variance ratio provides a very good and stable estimate of the Hurst exponent, but the estimates can be quite different from the measure obtained from rescaled range or R–S analysis. In general commodity prices are consistent with the underlying assumption of a geometric Brownian motion.

Suggested Citation

  • Turvey, Calum G., 2007. "A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 155-165.
  • Handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:155-165
    DOI: 10.1016/j.physa.2006.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106012374
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Marco Corazza & A.G. Malliaris & Carla Nardelli, 1997. "Searching for fractal structure in agricultural futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(4), pages 433-473, June.
    3. repec:crs:wpaper:9607 is not listed on IDEAS
    4. P. S. Sephton, 2002. "Fractional cointegration: Monte Carlo estimates of critical values, with an application," Applied Financial Economics, Taylor & Francis Journals, vol. 12(5), pages 331-335.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    7. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    8. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    9. Caccia, David C. & Percival, Donald & Cannon, Michael J. & Raymond, Gary & Bassingthwaighte, James B., 1997. "Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 609-632.
    10. G. Geoffrey Booth & Fred R. Kaen & Peter E. Koveos, 1982. "Persistent Dependence In Gold Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 5(1), pages 85-93, March.
    11. Epaminondas Panas, 2001. "Estimating fractal dimension using stable distributions and exploring long memory through ARFIMA models in Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 395-402.
    12. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    13. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    14. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    15. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    16. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    17. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    18. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    19. Hyun J. Jin & Darren L. Frechette, 2004. "Fractional Integration in Agricultural Futures Price Volatilities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 432-443.
    20. Booth, G. Geoffrey & Kaen, Fred R. & Koveos, Peter E., 1982. "R/S analysis of foreign exchange rates under two international monetary regimes," Journal of Monetary Economics, Elsevier, vol. 10(3), pages 407-415.
    21. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    22. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desogus, Marco & Conversano, Claudio & Pili, Ambrogio & Venturi, Beatrice, 2022. "Fractal analysis of Dow Jones Industrial Index returns," MPRA Paper 114923, University Library of Munich, Germany.
    2. repec:eme:afrpps:v:70:y:2010:i:1:p:5-20 is not listed on IDEAS
    3. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    4. Jean-Christophe Statnik & David Verstraete, 2015. "Price dynamics in agricultural commodity markets: a comparison of European and US markets," Empirical Economics, Springer, vol. 48(3), pages 1103-1117, May.
    5. Liesivaara, Petri & Myyrä, Sami, 2016. "Income stabilisation tool and the pig gross margin index for the Finnish pig sector," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236360, Agricultural Economics Society.
    6. Power, Gabriel J. & Turvey, Calum G., 2010. "Long-range dependence in the volatility of commodity futures prices: Wavelet-based evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 79-90.
    7. Goswami, Alankrita & Karali, Berna & Adjemian, Michael K., 2023. "Hedging with futures during nonconvergence in commodity markets," Journal of Commodity Markets, Elsevier, vol. 32(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turvey, Calum G. & Power, Gabriel J., 2006. "The Confidence Limits of a Geometric Brownian Motion," 2006 Annual meeting, July 23-26, Long Beach, CA 21239, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    3. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    4. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    5. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    6. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    7. Mulligan, Robert F. & Lombardo, Gary A., 2004. "Maritime businesses: volatile stock prices and market valuation inefficiencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 321-336, May.
    8. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, June.
    9. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    10. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    11. Robert Mulligan, 2000. "A fractal analysis of foreign exchange markets," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 6(1), pages 33-49, February.
    12. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, October.
    13. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    14. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    15. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    16. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    17. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    18. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:155-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.