IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v18y2015i3p291-300.html
   My bibliography  Save this article

A note on the pricing of multivariate contingent claims under a transformed-gamma distribution

Author

Listed:
  • Luiz Vitiello
  • Ivonia Rebelo

Abstract

We develop a framework for pricing multivariate European-style contingent claims in a discrete-time economy based on a multivariate transformed-gamma distribution. In our model, each transformed-gamma distributed underlying asset depends on two terms: a idiosyncratic term and a systematic term, where the latter is the same for all underlying assets and has a direct impact on their correlation structure. Given our distributional assumptions and the existence of a representative agent with a standard utility function, we apply equilibrium arguments and provide sufficient conditions for obtaining preference-free contingent claim pricing equations. We illustrate the applicability of our framework by providing examples of preference-free contingent claim pricing models. Multivariate pricing models are of particular interest when payoffs depend on two or more underlying assets, such as crack and crush spread options, options to exchange one asset for another, and options with a stochastic strike price in general. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Luiz Vitiello & Ivonia Rebelo, 2015. "A note on the pricing of multivariate contingent claims under a transformed-gamma distribution," Review of Derivatives Research, Springer, vol. 18(3), pages 291-300, October.
  • Handle: RePEc:kap:revdev:v:18:y:2015:i:3:p:291-300
    DOI: 10.1007/s11147-015-9112-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11147-015-9112-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-015-9112-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Gunther Leobacher & Philip Ngare, 2011. "On Modelling and Pricing Rainfall Derivatives with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 71-91.
    3. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
    4. Salem, A B Z & Mount, T D, 1974. "A Convenient Descriptive Model of Income Distribution: The Gamma Density," Econometrica, Econometric Society, vol. 42(6), pages 1115-1127, November.
    5. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    6. repec:bla:jfinan:v:53:y:1998:i:5:p:1705-1736 is not listed on IDEAS
    7. repec:bla:jfinan:v:59:y:2004:i:5:p:2375-2402 is not listed on IDEAS
    8. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    9. Robert Savickas, 2002. "A Simple Option‐Pricing Formula," The Financial Review, Eastern Finance Association, vol. 37(2), pages 207-226, May.
    10. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    11. Stapleton, Richard C & Subrahmanyam, Marti G, 1984. "The Valuation of Multivariate Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 39(1), pages 207-228, March.
    12. Heston, Steven L, 1993. "Invisible Parameters in Option Prices," Journal of Finance, American Finance Association, vol. 48(3), pages 933-947, July.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
    15. Fabio Bellini & Lorenzo Mercuri, 2014. "Option pricing in a conditional Bilateral Gamma model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(2), pages 373-390, June.
    16. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    17. Luiz Vitiello & Ser‐Huang Poon, 2010. "General equilibrium and preference free model for pricing options under transformed gamma distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(5), pages 409-431, May.
    18. Antonio Camara, 2005. "Option Prices Sustained by Risk-Preferences," The Journal of Business, University of Chicago Press, vol. 78(5), pages 1683-1708, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    4. Joseph K. Cheung, 1989. "On the nature of deferred income taxes," Contemporary Accounting Research, John Wiley & Sons, vol. 5(2), pages 625-641, March.
    5. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    6. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," PSE-Ecole d'économie de Paris (Postprint) halshs-00286054, HAL.
    7. Zhang, J. & Guégan, D., 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1095-1103, June.
    8. Masayuki Ikeda, 2010. "Equilibrium preference free pricing of derivatives under the generalized beta distributions," Review of Derivatives Research, Springer, vol. 13(3), pages 297-332, October.
    9. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    10. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Post-Print halshs-00286054, HAL.
    11. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    12. Dominique Guegan & Jing Zhang, 2007. "Pricing bivariate option under GARCH-GH model with dynamic copula : application for Chinese market," Post-Print halshs-00188248, HAL.
    13. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Post-Print halshs-00259242, HAL.
    14. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," Post-Print halshs-00368336, HAL.
    15. Joshua Rosenberg, 1999. "Semiparametric Pricing of Multivariate Contingent Claims," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-028, New York University, Leonard N. Stern School of Business-.
    16. Luiz Vitiello & Ser-Huang Poon, 2022. "Option pricing with random risk aversion," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1665-1684, May.
    17. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    18. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    19. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2012. "How to Calculate Systemic Risk Surcharges," NBER Chapters, in: Quantifying Systemic Risk, pages 175-212, National Bureau of Economic Research, Inc.
    20. Saralees Nadarajah, 2012. "Models for stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 411-424, February.

    More about this item

    Keywords

    Multivariate transformed-gamma distribution; Multivariate contingent claim; Stochastic strike price; General equilibrium; G13;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:18:y:2015:i:3:p:291-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.