IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v29y2016i1d10.1007_s10959-014-0571-y.html
   My bibliography  Save this article

On the Distribution of a Sum of Sarmanov Distributed Random Variables

Author

Listed:
  • Raluca Vernic

    (Ovidius University of Constanta
    Institute for Mathematical Statistics and Applied Mathematics)

Abstract

Built from given marginals with a flexible dependency structure, Sarmanov’s family of multivariate distributions became of interest in various fields. In this paper, we present some formulas for the density of the sum of several random variables joined by Sarmanov’s distribution, with accent on the particular case of exponentially distributed marginals. Such results are useful in solving, e.g., financial and actuarial problems.

Suggested Citation

  • Raluca Vernic, 2016. "On the Distribution of a Sum of Sarmanov Distributed Random Variables," Journal of Theoretical Probability, Springer, vol. 29(1), pages 118-142, March.
  • Handle: RePEc:spr:jotpro:v:29:y:2016:i:1:d:10.1007_s10959-014-0571-y
    DOI: 10.1007/s10959-014-0571-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-014-0571-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-014-0571-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    2. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    3. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    4. David A. Schweidel & Peter S. Fader & Eric T. Bradlow, 2008. "A Bivariate Timing Model of Customer Acquisition and Retention," Marketing Science, INFORMS, vol. 27(5), pages 829-843, 09-10.
    5. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiqing Chen & Jiajun Liu & Yang Yang, 2023. "Ruin under Light-Tailed or Moderately Heavy-Tailed Insurance Risks Interplayed with Financial Risks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    2. Rafał Wójcik & Charlie Wusuo Liu, 2022. "Bivariate Copula Trees for Gross Loss Aggregation with Positively Dependent Risks," Risks, MDPI, vol. 10(8), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
    2. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    3. Anas Abdallah & Lan Wang, 2023. "Rank-Based Multivariate Sarmanov for Modeling Dependence between Loss Reserves," Risks, MDPI, vol. 11(11), pages 1-37, October.
    4. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    5. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    6. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    7. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    8. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    9. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    10. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    11. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    12. Cai, Jun & Wang, Ying & Mao, Tiantian, 2017. "Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 105-116.
    13. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    14. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    15. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    16. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    17. Cossette, Hélène & Marceau, Etienne & Perreault, Samuel, 2015. "On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 214-224.
    18. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    19. Ren Jiandong & Zitikis Ricardas, 2017. "CMPH: a multivariate phase-type aggregate loss distribution," Dependence Modeling, De Gruyter, vol. 5(1), pages 304-315, December.
    20. Elena Di Bernardino & Clémentine Prieur, 2014. "Estimation of multivariate conditional-tail-expectation using Kendall's process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 241-267, June.
    21. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:29:y:2016:i:1:d:10.1007_s10959-014-0571-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.