IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v25y2012i4d10.1007_s10959-011-0358-3.html
   My bibliography  Save this article

Occupation Time Fluctuations of Weakly Degenerate Branching Systems

Author

Listed:
  • Yuqiang Li

    (East China Normal University)

  • Yimin Xiao

    (Michigan State University)

Abstract

We establish limit theorems for rescaled occupation time fluctuations of a sequence of branching particle systems in ℝ d with anisotropic space motion and weakly degenerate splitting ability. In the case of large dimensions, our limit processes lead to a new class of operator-scaling Gaussian random fields with nonstationary increments. In the intermediate and critical dimensions, the limit processes have spatial structures analogous to (but more complicated than) those arising from the critical branching particle system without degeneration considered by Bojdecki et al. (Stoch. Process. Appl. 116:1–18 and 19–35, 2006). Due to the weakly degenerate branching ability, temporal structures of the limit processes in all three cases are different from those obtained by Bojdecki et al. (Stoch. Process. Appl. 116:1–18 and 19–35, 2006).

Suggested Citation

  • Yuqiang Li & Yimin Xiao, 2012. "Occupation Time Fluctuations of Weakly Degenerate Branching Systems," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1119-1152, December.
  • Handle: RePEc:spr:jotpro:v:25:y:2012:i:4:d:10.1007_s10959-011-0358-3
    DOI: 10.1007/s10959-011-0358-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-011-0358-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-011-0358-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2004. "Sub-fractional Brownian motion and its relation to occupation times," RePAd Working Paper Series lrsp-TRS376, Département des sciences administratives, UQO.
    2. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems II: Critical and large dimensions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 19-35, January.
    3. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 1-18, January.
    4. Frédéric Lavancier, 2007. "Invariance principles for non-isotropic long memory random fields," Statistical Inference for Stochastic Processes, Springer, vol. 10(3), pages 255-282, October.
    5. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2008. "Occupation time limits of inhomogeneous Poisson systems of independent particles," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 28-52, January.
    6. Li, Yuqiang & Xiao, Yimin, 2011. "Multivariate operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1178-1200, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Cheng, Ziling, 2024. "Occupation times for age-structured branching processes," Statistics & Probability Letters, Elsevier, vol. 211(C).
    3. Milos, Piotr, 2009. "Occupation times of subcritical branching immigration systems with Markov motions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3211-3237, October.
    4. Bojdecki, Tomasz & Talarczyk, Anna, 2012. "Particle picture interpretation of some Gaussian processes related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2134-2154.
    5. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2015. "From intersection local time to the Rosenblatt process," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1227-1249, September.
    6. Li, Yuqiang, 2011. "Fluctuation limits of site-dependent branching systems in critical and large dimensions," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1604-1611, November.
    7. Tudor, Constantin, 2008. "Inner product spaces of integrands associated to subfractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2201-2209, October.
    8. Talarczyk, Anna, 2008. "A functional ergodic theorem for the occupation time process of a branching system," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 847-853, May.
    9. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    10. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2008. "Occupation time limits of inhomogeneous Poisson systems of independent particles," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 28-52, January.
    11. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    12. Shen, Guangjun & Chen, Chao, 2012. "Stochastic integration with respect to the sub-fractional Brownian motion with H∈(0,12)," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 240-251.
    13. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    14. Swanson, Jason, 2011. "Fluctuations of the empirical quantiles of independent Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 479-514, March.
    15. Wang, Wei & Cai, Guanghui & Tao, Xiangxing, 2021. "Pricing geometric asian power options in the sub-fractional brownian motion environment," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Sönmez, Ercan, 2018. "The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 426-444.
    17. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    18. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    19. Chen, Zhenlong & Xu, Peng, 2024. "Higher-order derivative of local times for space–time anisotropic Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 214(C).
    20. Axel A. Araneda, 2021. "Price modelling under generalized fractional Brownian motion," Papers 2108.12042, arXiv.org, revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:25:y:2012:i:4:d:10.1007_s10959-011-0358-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.