IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i10p3211-3237.html
   My bibliography  Save this article

Occupation times of subcritical branching immigration systems with Markov motions

Author

Listed:
  • Milos, Piotr

Abstract

We consider a branching system consisting of particles moving according to a Markov family in and undergoing subcritical branching with a constant rate V>0. New particles immigrate to the system according to a homogeneous space-time Poisson random field. The process of the fluctuations of the rescaled occupation time is studied with very mild assumptions on the Markov family. In this general setting a functional central limit theorem is proved. The subcriticality of the branching law is crucial for the limit behaviour and in a sense overwhelms the properties of the particles' motion. It is for this reason that the limit is the same for all dimensions and can be obtained for a wide class of Markov processes. Another consequence is the form of the limit --an -valued Wiener process with a simple temporal structure and a complicated spatial one. This behaviour contrasts sharply with the case of critical branching systems.

Suggested Citation

  • Milos, Piotr, 2009. "Occupation times of subcritical branching immigration systems with Markov motions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3211-3237, October.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3211-3237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00091-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 1-18, January.
    2. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2008. "Occupation time limits of inhomogeneous Poisson systems of independent particles," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 28-52, January.
    3. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems II: Critical and large dimensions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 19-35, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Hongyan, 2013. "A large deviation theorem for a branching Brownian motion with random immigration," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1559-1566.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqiang Li & Yimin Xiao, 2012. "Occupation Time Fluctuations of Weakly Degenerate Branching Systems," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1119-1152, December.
    2. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    3. Bojdecki, Tomasz & Talarczyk, Anna, 2012. "Particle picture interpretation of some Gaussian processes related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2134-2154.
    4. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2015. "From intersection local time to the Rosenblatt process," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1227-1249, September.
    5. Talarczyk, Anna, 2008. "A functional ergodic theorem for the occupation time process of a branching system," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 847-853, May.
    6. Li, Yuqiang, 2011. "Fluctuation limits of site-dependent branching systems in critical and large dimensions," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1604-1611, November.
    7. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2008. "Occupation time limits of inhomogeneous Poisson systems of independent particles," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 28-52, January.
    8. Tudor, Constantin, 2008. "Inner product spaces of integrands associated to subfractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2201-2209, October.
    9. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    10. Shen, Guangjun & Chen, Chao, 2012. "Stochastic integration with respect to the sub-fractional Brownian motion with H∈(0,12)," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 240-251.
    11. Sun, Hongyan, 2013. "A large deviation theorem for a branching Brownian motion with random immigration," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1559-1566.
    12. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3211-3237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.