IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i1p1-18.html
   My bibliography  Save this article

Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence

Author

Listed:
  • Bojdecki, T.
  • Gorostiza, L.G.
  • Talarczyk, A.

Abstract

We give a functional limit theorem for the fluctuations of the rescaled occupation time process of a critical branching particle system in with symmetric [alpha]-stable motion and [alpha]

Suggested Citation

  • Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 1-18, January.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:1:p:1-18
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00104-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deuschel, Jean-Dominique & Wang, Kongming, 1994. "Large deviations for the occupation time functional of a Poisson system of independent Brownian particles," Stochastic Processes and their Applications, Elsevier, vol. 52(2), pages 183-209, August.
    2. Bojdecki, Tomasz & Gorostiza, Luis G. & Talarczyk, Anna, 2004. "Sub-fractional Brownian motion and its relation to occupation times," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 405-419, October.
    3. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2004. "Sub-fractional Brownian motion and its relation to occupation times," RePAd Working Paper Series lrsp-TRS376, Département des sciences administratives, UQO.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bojdecki, Tomasz & Talarczyk, Anna, 2012. "Particle picture interpretation of some Gaussian processes related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2134-2154.
    2. Tudor, Constantin, 2008. "Inner product spaces of integrands associated to subfractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2201-2209, October.
    3. Cheng, Ziling, 2024. "Occupation times for age-structured branching processes," Statistics & Probability Letters, Elsevier, vol. 211(C).
    4. Talarczyk, Anna, 2008. "A functional ergodic theorem for the occupation time process of a branching system," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 847-853, May.
    5. Li, Yuqiang, 2011. "Fluctuation limits of site-dependent branching systems in critical and large dimensions," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1604-1611, November.
    6. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2008. "Occupation time limits of inhomogeneous Poisson systems of independent particles," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 28-52, January.
    7. Yuqiang Li & Yimin Xiao, 2012. "Occupation Time Fluctuations of Weakly Degenerate Branching Systems," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1119-1152, December.
    8. Milos, Piotr, 2009. "Occupation times of subcritical branching immigration systems with Markov motions," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3211-3237, October.
    9. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    10. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    11. Shen, Guangjun & Chen, Chao, 2012. "Stochastic integration with respect to the sub-fractional Brownian motion with H∈(0,12)," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 240-251.
    12. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2015. "From intersection local time to the Rosenblatt process," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1227-1249, September.
    13. Sun, Hongyan, 2013. "A large deviation theorem for a branching Brownian motion with random immigration," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1559-1566.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojdecki, Tomasz & Talarczyk, Anna, 2012. "Particle picture interpretation of some Gaussian processes related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2134-2154.
    2. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2005. "A Long Range Dependence Stable Process and an Infinite Variance Branching System," RePAd Working Paper Series lrsp-TRS425, Département des sciences administratives, UQO.
    3. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Cases of Large and Critical Dimensions," RePAd Working Paper Series lrsp-TRS404, Département des sciences administratives, UQO.
    4. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Case of Long-Range Dependence," RePAd Working Paper Series lrsp-TRS402, Département des sciences administratives, UQO.
    5. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems II: Critical and large dimensions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 19-35, January.
    6. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
    7. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Cheng, Ziling, 2024. "Occupation times for age-structured branching processes," Statistics & Probability Letters, Elsevier, vol. 211(C).
    9. Swanson, Jason, 2011. "Fluctuations of the empirical quantiles of independent Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 479-514, March.
    10. Nenghui Kuang & Huantian Xie, 2015. "Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 75-91, February.
    11. Bodo Herzog, 2023. "Fractional Stochastic Search Algorithms: Modelling Complex Systems via AI," Mathematics, MDPI, vol. 11(9), pages 1-11, April.
    12. Kubilius, K., 2020. "CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index," Statistics & Probability Letters, Elsevier, vol. 165(C).
    13. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    14. Wang, Wei & Cai, Guanghui & Tao, Xiangxing, 2021. "Pricing geometric asian power options in the sub-fractional brownian motion environment," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    15. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2015. "From intersection local time to the Rosenblatt process," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1227-1249, September.
    16. Aimin, Yang & Shanshan, Li & Honglei, Lin & Donghao, Jin, 2018. "Edge extraction of mineralogical phase based on fractal theory," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 215-221.
    17. Tudor, Constantin, 2008. "Inner product spaces of integrands associated to subfractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2201-2209, October.
    18. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    19. Axel A. Araneda, 2021. "Price modelling under generalized fractional Brownian motion," Papers 2108.12042, arXiv.org, revised Nov 2023.
    20. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.