IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v23y2010i4d10.1007_s10959-009-0252-4.html
   My bibliography  Save this article

Existence and Uniqueness of Bounded Weak Solutions of a Semilinear Parabolic PDE

Author

Listed:
  • Qikang Ran

    (Shanghai University of Finance and Economics)

  • Tusheng Zhang

    (University of Manchester)

Abstract

This paper has two parts. In part I, the existence and uniqueness are established for Sobolev solutions of a class of semilinear parabolic partial differential equations. Moreover, a probabilistic interpretation of the solutions in terms of backward stochastic differential equations is obtained. In part II, the existence for viscosity solutions of PDEs with obstacle and Neumann boundary condition is proved.

Suggested Citation

  • Qikang Ran & Tusheng Zhang, 2010. "Existence and Uniqueness of Bounded Weak Solutions of a Semilinear Parabolic PDE," Journal of Theoretical Probability, Springer, vol. 23(4), pages 951-971, December.
  • Handle: RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0252-4
    DOI: 10.1007/s10959-009-0252-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-009-0252-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-009-0252-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin Ma & Jakša Cvitanić, 2001. "Reflected forward-backward SDE s and obstacle problems with boundary conditions," International Journal of Stochastic Analysis, Hindawi, vol. 14, pages 1-26, January.
    2. V. Bally & A. Matoussi, 2001. "Weak Solutions for SPDEs and Backward Doubly Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 14(1), pages 125-164, January.
    3. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    2. Luis Escauriaza & Daniel C. Schwarz & Hao Xing, 2020. "Radner equilibrium and systems of quadratic BSDEs with discontinuous generators," Papers 2008.03500, arXiv.org, revised May 2021.
    3. repec:hal:wpaper:hal-01147411 is not listed on IDEAS
    4. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    5. Jackson, Joe & Žitković, Gordan, 2022. "A characterization of solutions of quadratic BSDEs and a new approach to existence," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 210-225.
    6. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    7. M. Nabil Kazi-Tani & Dylan Possamai & Chao Zhou, 2014. "Quadratic BSDEs with jumps: related non-linear expectations," Papers 1403.2730, arXiv.org.
    8. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    9. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    10. Martin Herdegen & Johannes Muhle-Karbe & Dylan Possamai, 2019. "Equilibrium Asset Pricing with Transaction Costs," Papers 1901.10989, arXiv.org, revised Sep 2020.
    11. Dmitry Kramkov & Sergio Pulido, 2016. "Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model," Post-Print hal-01181147, HAL.
    12. Kim Weston, 2022. "Existence of an equilibrium with limited participation," Papers 2206.12399, arXiv.org.
    13. Dmitry Kramkov & Sergio Pulido, 2014. "A system of quadratic BSDEs arising in a price impact model," Papers 1408.0916, arXiv.org, revised May 2016.
    14. Anis Matoussi & Michael Scheutzow, 2002. "Stochastic PDEs Driven by Nonlinear Noise and Backward Doubly SDEs," Journal of Theoretical Probability, Springer, vol. 15(1), pages 1-39, January.
    15. Masaaki Fujii & Akihiko Takahashi, 2015. "Quadratic-exponential growth BSDEs with Jumps and their Malliavin's Differentiability," Papers 1512.05924, arXiv.org, revised Sep 2017.
    16. Dmitry Kramkov & Sergio Pulido, 2016. "A system of quadratic BSDEs arising in a price impact model," Post-Print hal-01147411, HAL.
    17. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    18. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    19. Michael Mania & Marina Santacroce, 2008. "Exponential Utility Maximization under Partial Information," ICER Working Papers - Applied Mathematics Series 24-2008, ICER - International Centre for Economic Research.
    20. Dirk Becherer & Martin Buttner & Klebert Kentia, 2016. "On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples," Papers 1607.06644, arXiv.org, revised Nov 2019.
    21. Guanxing Fu & Chao Zhou, 2021. "Mean Field Portfolio Games," Papers 2106.06185, arXiv.org, revised Apr 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0252-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.