IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.01352.html
   My bibliography  Save this paper

Mean field equilibrium asset pricing model under partial observation: An exponential quadratic Gaussian approach

Author

Listed:
  • Masashi Sekine

Abstract

This paper studies an asset pricing model in a partially observable market with a large number of heterogeneous agents using the mean field game theory. In this model, we assume that investors can only observe stock prices and must infer the risk premium from these observations when determining trading strategies. We characterize the equilibrium risk premium in such a market through a solution to the mean field backward stochastic differential equation (BSDE). Specifically, the solution to the mean field BSDE can be expressed semi-analytically by employing an exponential quadratic Gaussian framework. We then construct the risk premium process, which cannot be observed directly by investors, endogenously using the Kalman-Bucy filtering theory. In addition, we include a simple numerical simulation to visualize the dynamics of our market model.

Suggested Citation

  • Masashi Sekine, 2024. "Mean field equilibrium asset pricing model under partial observation: An exponential quadratic Gaussian approach," Papers 2410.01352, arXiv.org.
  • Handle: RePEc:arx:papers:2410.01352
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.01352
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianhui Huang & Shujun Wang, 2016. "Dynamic Optimization of Large-Population Systems with Partial Information," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 231-245, January.
    2. Huyên Pham, 2001. "Mean-Variance Hedging For Partially Observed Drift Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 263-284.
    3. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    4. Medvegyev, Peter, 2007. "Stochastic Integration Theory," OUP Catalogue, Oxford University Press, number 9780199215256.
    5. Masaaki Fujii & Akihiko Takahashi, 2014. "Making mean-variance hedging implementable in a partially observable market," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1709-1724, October.
    6. Back, Kerry E., 2017. "Asset Pricing and Portfolio Choice Theory," OUP Catalogue, Oxford University Press, number 9780190241148.
    7. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    8. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    9. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    10. Michael Mania & Marina Santacroce, 2010. "Exponential utility maximization under partial information," Finance and Stochastics, Springer, vol. 14(3), pages 419-448, September.
    11. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaaki Fujii & Masashi Sekine, 2024. "Mean field equilibrium asset pricing model with habit formation," Papers 2406.02155, arXiv.org, revised Nov 2024.
    2. Masaaki Fujii & Masashi Sekine, 2024. "Mean field equilibrium asset pricing model with habit formation (Forthcoming in Asia-Pacific Financial Markets)," CARF F-Series CARF-F-587, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Nov 2024.
    3. Masaaki Fujii & Masashi Sekine, 2024. "Mean Field Equilibrium Asset Pricing Model with Habit Formation," CIRJE F-Series CIRJE-F-1229, CIRJE, Faculty of Economics, University of Tokyo.
    4. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    5. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," Papers 2304.07108, arXiv.org, revised Oct 2023.
    6. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," CARF F-Series CARF-F-559, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    8. Michael Mania & Marina Santacroce, 2008. "Exponential Utility Maximization under Partial Information," ICER Working Papers - Applied Mathematics Series 24-2008, ICER - International Centre for Economic Research.
    9. Covello, D. & Santacroce, M., 2010. "Power utility maximization under partial information: Some convergence results," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2016-2036, September.
    10. Thai Nguyen & Mitja Stadje, 2020. "Utility maximization under endogenous pricing," Papers 2005.04312, arXiv.org, revised Mar 2024.
    11. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    12. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    13. Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market -with supplementary contents for stochastic interest rates-," CARF F-Series CARF-F-332, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    14. repec:hal:wpaper:hal-01147411 is not listed on IDEAS
    15. Wahid Faidi, 2022. "Optimal investment and consumption under logarithmic utility and uncertainty model," Papers 2211.05367, arXiv.org, revised Jun 2024.
    16. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    17. Zongxia Liang & Jianming Xia & Keyu Zhang, 2023. "Equilibrium stochastic control with implicitly defined objective functions," Papers 2312.15173, arXiv.org, revised Dec 2023.
    18. Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market," Papers 1306.3359, arXiv.org, revised Nov 2013.
    19. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    20. Masaaki Fujii & Akihiko Takahashi, 2013. "Making Mean-Variance Hedging Implementable in a Partially Observable Market," CARF F-Series CARF-F-321, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    21. M. Nabil Kazi-Tani & Dylan Possamai & Chao Zhou, 2014. "Quadratic BSDEs with jumps: related non-linear expectations," Papers 1403.2730, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.01352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.