IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i3p1275-1302.html
   My bibliography  Save this article

Some results on general quadratic reflected BSDEs driven by a continuous martingale

Author

Listed:
  • Lionnet, Arnaud

Abstract

We study the well-posedness of general reflected BSDEs driven by a continuous martingale, when the coefficient f of the driver has at most quadratic growth in the control variable Z, with a bounded terminal condition and a lower obstacle which is bounded above. We obtain the basic results in this setting: comparison and uniqueness, existence, stability. For the comparison theorem and the special comparison theorem for reflected BSDEs (which allows one to compare the increasing processes of two solutions), we give intrinsic proofs which do not rely on the comparison theorem for standard BSDEs. This allows to obtain the special comparison theorem under minimal assumptions. We obtain existence by using the fixed point theorem and then a series of perturbations, first in the case where f is Lipschitz in the primary variable Y, and then in the case where f can have slightly-superlinear growth and the case where f is monotonous in Y with arbitrary growth. We also obtain a local Lipschitz estimate in BMO for the martingale part of the solution.

Suggested Citation

  • Lionnet, Arnaud, 2014. "Some results on general quadratic reflected BSDEs driven by a continuous martingale," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1275-1302.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:3:p:1275-1302
    DOI: 10.1016/j.spa.2013.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913002627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    2. Bayraktar, Erhan & Yao, Song, 2012. "Quadratic reflected BSDEs with unbounded obstacles," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1155-1203.
    3. Matoussi, Anis, 1997. "Reflected solutions of backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 347-354, June.
    4. Briand, Philippe & Elie, Romuald, 2013. "A simple constructive approach to quadratic BSDEs with or without delay," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2921-2939.
    5. Briand, Ph. & Delyon, B. & Hu, Y. & Pardoux, E. & Stoica, L., 2003. "Lp solutions of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 109-129, November.
    6. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    7. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    8. Briand, Philippe & Confortola, Fulvia, 2008. "BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 818-838, May.
    9. Xu, Mingyu, 2008. "Backward stochastic differential equations with reflection and weak assumptions on the coefficients," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 968-980, June.
    10. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2016. "Existence and uniqueness results for BSDEs with jumps: the whole nine yards," Papers 1607.04214, arXiv.org, revised Nov 2018.
    2. Fan, ShengJun, 2016. "Bounded solutions, Lp(p>1) solutions and L1 solutions for one dimensional BSDEs under general assumptions," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1511-1552.
    3. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    4. Masaaki Fujii & Akihiko Takahashi, 2015. "Quadratic-exponential growth BSDEs with Jumps and their Malliavin's Differentiability," Papers 1512.05924, arXiv.org, revised Sep 2017.
    5. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    6. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    7. Geiss, Stefan & Ylinen, Juha, 2020. "Weighted bounded mean oscillation applied to backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3711-3752.
    8. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    9. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    10. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    11. Briand, Philippe & Elie, Romuald, 2013. "A simple constructive approach to quadratic BSDEs with or without delay," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2921-2939.
    12. Mastrolia, Thibaut, 2018. "Density analysis of non-Markovian BSDEs and applications to biology and finance," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 897-938.
    13. Vicky Henderson & Gechun Liang, 2014. "Pseudo linear pricing rule for utility indifference valuation," Finance and Stochastics, Springer, vol. 18(3), pages 593-615, July.
    14. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    15. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    16. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    17. Fan, Shengjun & Hu, Ying, 2021. "Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 21-50.
    18. Kim Weston, 2022. "Existence of an equilibrium with limited participation," Papers 2206.12399, arXiv.org.
    19. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    20. Michael Mania & Marina Santacroce, 2008. "Exponential Utility Maximization under Partial Information," ICER Working Papers - Applied Mathematics Series 24-2008, ICER - International Centre for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:3:p:1275-1302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.