IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v147y2022icp210-225.html
   My bibliography  Save this article

A characterization of solutions of quadratic BSDEs and a new approach to existence

Author

Listed:
  • Jackson, Joe
  • Žitković, Gordan

Abstract

We provide a novel characterization of the solutions of a quadratic BSDE, which is analogous to the characterization of local martingales by convex functions. We then use our main result to show that BSDE solutions are closed under ucp convergence. Finally, we use our closure result obtain a sufficient condition for existence, and discuss specific cases in which this sufficient condition can be verified.

Suggested Citation

  • Jackson, Joe & Žitković, Gordan, 2022. "A characterization of solutions of quadratic BSDEs and a new approach to existence," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 210-225.
  • Handle: RePEc:eee:spapps:v:147:y:2022:i:c:p:210-225
    DOI: 10.1016/j.spa.2022.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922000060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Ying & Tang, Shanjian, 2016. "Multi-dimensional backward stochastic differential equations of diagonally quadratic generators," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1066-1086.
    2. Briand, Philippe & Elie, Romuald, 2013. "A simple constructive approach to quadratic BSDEs with or without delay," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2921-2939.
    3. Xing, Hao & Žitković, Gordan, 2018. "A class of globally solvable Markovian quadratic BSDE systems and applications," LSE Research Online Documents on Economics 73440, London School of Economics and Political Science, LSE Library.
    4. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    2. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    3. Kihun Nam, 2019. "Global Well-posedness of Non-Markovian Multidimensional Superquadratic BSDE," Papers 1912.03692, arXiv.org, revised Jan 2022.
    4. Luis Escauriaza & Daniel C. Schwarz & Hao Xing, 2020. "Radner equilibrium and systems of quadratic BSDEs with discontinuous generators," Papers 2008.03500, arXiv.org, revised May 2021.
    5. Dmitry Kramkov & Sergio Pulido, 2016. "Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model," Post-Print hal-01181147, HAL.
    6. Kim Weston, 2022. "Existence of an equilibrium with limited participation," Papers 2206.12399, arXiv.org.
    7. Hernández, Camilo, 2023. "On quadratic multidimensional type-I BSVIEs, infinite families of BSDEs and their applications," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 249-298.
    8. Yuyang Chen & Peng Luo, 2023. "Existence and Uniqueness of Solutions for Multi-dimensional Reflected Backward Stochastic Differential Equations with Diagonally Quadratic Generators," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1698-1719, September.
    9. Hao, Tao & Wen, Jiaqiang & Xiong, Jie, 2022. "Solvability of a class of mean-field BSDEs with quadratic growth," Statistics & Probability Letters, Elsevier, vol. 191(C).
    10. Martin Herdegen & Johannes Muhle-Karbe & Dylan Possamaï, 2021. "Equilibrium asset pricing with transaction costs," Finance and Stochastics, Springer, vol. 25(2), pages 231-275, April.
    11. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2016. "Existence and uniqueness results for BSDEs with jumps: the whole nine yards," Papers 1607.04214, arXiv.org, revised Nov 2018.
    12. Xing, Hao & Žitković, Gordan, 2018. "A class of globally solvable Markovian quadratic BSDE systems and applications," LSE Research Online Documents on Economics 73440, London School of Economics and Political Science, LSE Library.
    13. Jackson, Joe, 2023. "The reverse Hölder inequality for matrix-valued stochastic exponentials and applications to quadratic BSDE systems," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 1-32.
    14. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    15. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    16. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    17. Fan, Shengjun & Hu, Ying, 2021. "Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 21-50.
    18. Martin Herdegen & Johannes Muhle-Karbe & Dylan Possamai, 2019. "Equilibrium Asset Pricing with Transaction Costs," Papers 1901.10989, arXiv.org, revised Sep 2020.
    19. Kim Weston & Gordan Žitković, 2020. "An incomplete equilibrium with a stochastic annuity," Finance and Stochastics, Springer, vol. 24(2), pages 359-382, April.
    20. Alessandro Prosperi, 2022. "A partial stochastic equilibrium model and its limiting behaviour," Papers 2211.17231, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:147:y:2022:i:c:p:210-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.